| 注册
首页|期刊导航|机电工程技术|基于DBO-ELM模型的隔振橡胶疲劳寿命预测

基于DBO-ELM模型的隔振橡胶疲劳寿命预测

秦武 李春归 潘兵兵 李骏 胡建泰 葛平政 刘霏霏

机电工程技术2024,Vol.53Issue(2):13-19,7.
机电工程技术2024,Vol.53Issue(2):13-19,7.DOI:10.3969/j.issn.1009-9492.2024.02.003

基于DBO-ELM模型的隔振橡胶疲劳寿命预测

Fatigue Life Prediction for Vibration Isolation Rubber Components Based on DBO-ELM Model

秦武 1李春归 2潘兵兵 3李骏 2胡建泰 3葛平政 4刘霏霏2

作者信息

  • 1. 华东交通大学机电与车辆工程学院,南昌 330013||建新赵氏科技有限公司,宁波 315609
  • 2. 华东交通大学机电与车辆工程学院,南昌 330013
  • 3. 建新赵氏科技有限公司,宁波 315609
  • 4. 华东交通大学机电与车辆工程学院,南昌 330013||江西交通职业技术学院,南昌 330013
  • 折叠

摘要

Abstract

The vibration isolation rubber components of vehicle is excited by the alternate load.It is essential to establish the model for predicting the fatigue life under the different strain ratios.A prediction method for fatigue life is proposed based on dung beetle optimization(DBO)algorithm and extreme learning machine(ELM)model,considering the effect of strain ratios.With the uniaxially loaded fatigue test for rubber specimens,the fatigue life is obtained under different strain ratios;taking the stress amplitude,strain mean and strain ratio as the input variables,and the rubber fatigue life as the output variable,the DBO algorithm is used to optimize the input layer weights and implied layer bias in the ELM model to establish the DBO-ELM model for predicting the fatigue life of rubber samples.The accuracy of the proposed DBO-ELM model,machine learning model and power function model is compared.The results show that the prediction results under the DBO-ELM model have better consistency with experimental results;by using the DBO-ELM model,the prediction accuracy of rubber fatigue life can be significantly improved,which verify the effectiveness of the model for predicting rubber fatigue life.

关键词

隔振橡胶/应变比/疲劳寿命预测/极限学习机/蜣螂算法

Key words

isolation rubber/strain ratio/fatigue life prediction/extreme learning machine/dung beetle optimization

分类

交通工程

引用本文复制引用

秦武,李春归,潘兵兵,李骏,胡建泰,葛平政,刘霏霏..基于DBO-ELM模型的隔振橡胶疲劳寿命预测[J].机电工程技术,2024,53(2):13-19,7.

基金项目

国家自然科学基金资助项目(51806066) (51806066)

博士后科学基金项目(2022M711352) (2022M711352)

江西省科技厅项目(20232BAB214047) (20232BAB214047)

江西省交通运输厅科技项目(2023H0040) (2023H0040)

江西省教育厅科技项目(GJJ210630 ()

GJJ2205201) ()

江西交通职业技术学院课题(2022JG04) (2022JG04)

机电工程技术

1009-9492

访问量0
|
下载量0
段落导航相关论文