| 注册
首页|期刊导航|计算机工程|基于角度的图神经网络高维数据异常检测方法

基于角度的图神经网络高维数据异常检测方法

王俊 赖会霞 万玥 张仕

计算机工程2024,Vol.50Issue(3):156-165,10.
计算机工程2024,Vol.50Issue(3):156-165,10.DOI:10.19678/j.issn.1000-3428.0067948

基于角度的图神经网络高维数据异常检测方法

Angle-based Graph Neural Network Method for Anomaly Detection in High Dimensional Data

王俊 1赖会霞 2万玥 1张仕3

作者信息

  • 1. 福建师范大学计算机与网络空间安全学院,福建 福州 350117
  • 2. 福建师范大学计算机与网络空间安全学院,福建 福州 350117||福建省网络安全与密码技术重点实验室,福建 福州 350117
  • 3. 福建师范大学计算机与网络空间安全学院,福建 福州 350117||福建师范大学数字福建环境监测物联网实验室,福建 福州 350117
  • 折叠

摘要

Abstract

In high-dimensional data spaces,most data are located at the edges of the high-dimensional space and distributed sparsely,resulting in the problem of"curse of dimensionality",which makes existing anomaly detection methods unable to ensure the accuracy of anomaly detection.To address this problem,an Angle-based Graph Neural Network(A-GNN)high-dimensional data anomaly detection method is proposed.First,the data used for training are expanded by uniformly sampling the data space and perturbing the initial training data.Second,the k-nearest neighbor relationship is used to construct a k-nearest neighbor relationship graph of the training data,and the variance of the k-nearest neighbor element distance weighted angle is used as the initial anomaly factor for the nodes in the k-nearest neighbor relationship graph.Finally,by training a GNN model,information exchange between nodes is achieved,enabling adjacent nodes to learn from each other and effectively evaluate anomalies.The A-GNN method is experimentally compared with nine typical anomaly detection methods on six natural datasets.The results demonstrate that A-GNN achieved the highest Area Under the Curve(AUC)value in five datasets,which can significantly improve the anomaly detection accuracy of various dimensions of data.On some true high-dimensional data,the AUC of anomaly detection increased by more than 40%.Compared with three k-nearest neighbor-based anomaly detection methods at different k values,A-GNN can effectively avoid the impact of k values on detection results by utilizing information exchange between GNN nodes,and the method has stronger robustness.

关键词

异常检测/基于角度的异常评估/图神经网络/高维数据/k近邻

Key words

anomaly detection/angle-based anomaly assessment/Graph Neural Network(GNN)/high-dimensional data/k-nearest neighbor

分类

信息技术与安全科学

引用本文复制引用

王俊,赖会霞,万玥,张仕..基于角度的图神经网络高维数据异常检测方法[J].计算机工程,2024,50(3):156-165,10.

基金项目

国家自然科学基金(61772004) (61772004)

福建省自然科学基金(2020J01161) (2020J01161)

福建省科技厅对外合作项目(2023I0013). (2023I0013)

计算机工程

OA北大核心CSTPCD

1000-3428

访问量0
|
下载量0
段落导航相关论文