CLDAS地表温度产品在青藏高原多年冻土区的适用性评估与校正OA北大核心CSTPCD
Applicability evaluation and correction of CLDAS surface temperature products in permafrost region of Qinghai-Tibet Plateau
青藏高原多年冻土区现有的地表温度数据主要包括点位观测的地表和浅表层地温数据,以及遥感反演、模式模拟和再分析等手段获取和制备的空间数据.中国气象局陆面数据同化系统(CLDAS)数据产品在全国大部分地区的表现较好,但受实测数据稀缺的限制以及对多年冻土特殊下垫面考量不足的影响,该数据在青藏高原多年冻土区的适用性有待进一步评估和修正.文中基于多年冻土区 2008-2018 年 7 个站点的逐日连续地表温度定点观测数据,对CLDAS地表温度数据进行评估,分析在不同时期以及不同下垫面类型下,CLDAS地表温度的适用性情况.结果表明:CLDAS在7个站点的地表温度与实测值存在较大偏差(bias=2.09℃,MAE=3.64℃,RMSE=4.67℃,R2=0.83),主要表现为对地表温度的高估.其中,CLDAS在融化期的适用性相对较好,在冻融交替期、冻结期的适用性较差;在高寒荒漠、高寒荒漠草原地区的适用性较好,在高寒沼泽草甸地区的适用性较差.据此,在考虑归一化植被指数(NDVI)、归一化积雪指数(NDSI)、积雪深度、高程、坡度、坡向、土壤质地对地表温度的影响基础上,构建了多元逐步回归校正模型.校正模型考虑了研究区下垫面情况的差异,提高了CLDAS的模拟精度.结果显示,区分冻结期、融化期、交替期构建模型校正的结果优于不考虑冻融期构建的校正模型.区分冻融期分别构建多元逐步回归模型进行校正后,CLDAS地表温度的精度得到了明显提升(bias=-0.11℃,MAE=2.42℃,RMSE=3.23℃,R2=0.89).
Land surface temperature(LST)is a crucial parameter to characterize the surface thermal state and conduct research on the surface hydrothermal and ecological processes.The available LST data in the permafrost region of the Qinghai-Tibet Plateau mainly include the observed data of land surface and shallow ground temperature,remote sensing derive data,model simulation data and reanalysis data.CLDAS dataset has a good performance in most regions of China.However,due to the lack of measured data in permafrost regions of the Qinghai-Tibet Plateau and insufficient consideration of the underlying surface of permafrost,the applicability of CLDAS in the Qinghai-Tibet Plateau needs to be further evaluated.Based on the measured LST data of seven stations in the permafrost region,the CLDAS LST data from 2008 to 2018 were evaluated in different freeze-thaw periods and underlying surface types.The results showed significant errors between CLDAS and the measured values(bias=2.09℃,MAE=3.64℃,RMSE=4.67℃,R2=0.83),mainly performed that CLDAS overestimated the measured LST.The applicability of CLDAS LST is good in the thawing period,but poor in the freeze-thaw alternating period(MAE=3.78℃)and freezing period.And it's better in the alpine desert and alpine desert steppe than that in alpine meadow.Therefore,a multiple stepwise regression correction model was established based on the influences of NDVI,NDSI,snow depth,elevation,slope,aspect and soil texture factors on LST.The correction model took the differences of underlying surface conditions into account and improved the simulation accuracy of CLDAS LST.The results show that the correction models constructed by freezing period,thawing period and alternating period separately performed better than a single model.The accuracy of corrected CLDAS LST by three-period models was significantly improved(bias=-0.11℃,MAE=2.42℃,RMSE=3.23℃,R2=0.89).
胡佳怡;杜二计;赵林;王翀;胡国杰;邹德富;幸赞品;焦梦迪;乔永平;刘广岳
南京信息工程大学地理科学学院,南京 210044||南京师范大学地理科学学院,南京 210023中国科学院西北生态环境资源研究院/冰冻圈科学国家重点实验室/藏北高原冰冻圈特殊环境与灾害国家野外科学观测研究站,兰州 730000||中国科学院大学,北京 100049南京信息工程大学地理科学学院,南京 210044||中国科学院西北生态环境资源研究院/冰冻圈科学国家重点实验室/藏北高原冰冻圈特殊环境与灾害国家野外科学观测研究站,兰州 730000南京信息工程大学地理科学学院,南京 210044中国科学院西北生态环境资源研究院/冰冻圈科学国家重点实验室/藏北高原冰冻圈特殊环境与灾害国家野外科学观测研究站,兰州 730000
地表温度CLDAS青藏高原适用性评估多元回归校正
Land surface temperatureCLDASQinghai-Tibetan PlateauApplicability evaluationMultiple regression correction
《气候变化研究进展》 2024 (001)
10-25 / 16
国家自然科学基金(42001051);青海省重大科技专项(2021-SF-A7-1)
评论