| 注册
首页|期刊导航|陕西师范大学学报(自然科学版)|基于简单无参注意力卷积神经网络的涡旋光束模态识别

基于简单无参注意力卷积神经网络的涡旋光束模态识别

魏冬梅 刘芳宁 杜乾 王珂 赵曰峰

陕西师范大学学报(自然科学版)2024,Vol.52Issue(2):111-120,10.
陕西师范大学学报(自然科学版)2024,Vol.52Issue(2):111-120,10.DOI:10.15983/j.cnki.jsnu.2024309

基于简单无参注意力卷积神经网络的涡旋光束模态识别

Modes recognition algorithm of vortex beam based on simple parameter-free attention convolutional neural networks

魏冬梅 1刘芳宁 1杜乾 1王珂 1赵曰峰1

作者信息

  • 1. 山东师范大学物理与电子科学学院光场调控及应用中心,山东济南 250358
  • 折叠

摘要

Abstract

When vortex beam propagates in the atmosphere,phase distortion is generated due to the influence of atmospheric turbulence,which makes it difficult to detect the mode at the receiving end and reduces the reliability of the communication system.In order to improve the accuracy of vortex beam mode recognition,a simple parameter-free attention convolution neural network(S-ConvNeXt)is proposed.Results show that this proposed network can effectively focus on key bright spot features.When the transmission distance is 2 km,the accuracy of eigenstate recognition can reach 100%,98.8%,96.4%,89.7%,the accuracy of superposition state recognition can reach 100%,99.8%,98.8%,96.5%,via weak turbulence,medium turbulence,strong turbulence and stronger turbulence respectively.Under strong turbulence,the eigenstate recognition accuracy of S-ConvNeXt is 5.7%,3%and 1.2%higher than that of ResNet50,ShuffleNetV2 and Conv NeXt,and the superposition state recognition accuracy of S-Conv NeXt is 5.7%,4%and 0.9%higher than that of ResNet50,ShuffleNetV2 and ConvNeXt respectively.S-Conv NeXt can effectively improve the accuracy of mode recognition,especially in strong turbulence.

关键词

涡旋光束/Conv NeXt网络/大气湍流/模态识别/注意力机制

Key words

vortex beam/ConvNeXt/atmospheric turbulence/mode recognition/attention mech-anisms

分类

信息技术与安全科学

引用本文复制引用

魏冬梅,刘芳宁,杜乾,王珂,赵曰峰..基于简单无参注意力卷积神经网络的涡旋光束模态识别[J].陕西师范大学学报(自然科学版),2024,52(2):111-120,10.

基金项目

国家自然科学基金(42271093) (42271093)

山东省本科教学改革研究项目(M2021235) (M2021235)

陕西师范大学学报(自然科学版)

OA北大核心CSTPCD

1672-4291

访问量0
|
下载量0
段落导航相关论文