基于气动声学故障诊断技术的风机叶片开裂模型仿真与检测方法研究OACSTPCD
Research on wind turbine trailing edge cracking modeling simulation and measurement based on aeroacoustics fault diagnosis technology
随着新能源技术的不断发展,风力发电逐渐成为目前主要的可再生能源发电方式.大型风机的发展对于风力发电行业而言至关重要,但其也存在诸多的运维问题.为了解决风力发电机叶片受载荷不均匀,容易造成尾缘开裂,以及运维困难的问题,通过数值模拟与半经验声学模型结合的方法研究风机叶片开裂状态下气动噪声的变化,并提出采用IEEE 2400国际标准进行声学故障检测的理论框架.通过对不同的实验结果以及NREL的半经验模型软件仿真结果分析,得出:所提出的非接触式检测模型可以有效地识别到风机叶片的开裂故障;同时该方法有较强的推广性,可以用于其他的风机叶片故障分析与监测.该模型不仅可以检测风机的叶片开裂故障,还可以用于分析风机运行时的气动声学特征,对于完善风机叶片无损检测、非接触式具有十分重要的意义.
With the continuous development of new energy technologies,wind power has increasingly become the main renewable energy power generation method.The development of large-scale wind turbines is a trend in the wind power industry,and at the same time it has brought many operation and maintenance problems.In order to solve the problems of uneven load on wind turbine blades,easy occurrence of trailing edge cracking,and difficulties in operation and maintenance,a combination of numerical simulation and semi empirical acoustic models is used to study the changes in aerodynamic noise of wind turbine blades under cracking conditions.A theoretical framework for acoustic fault detection using IEEE 2400 international standard is proposed.By means of the analysis of different experimental results and the simulation results of NREL′s semi empirical model software,it is concluded that the proposed non-contact detection model can effectively identify the cracking fault of fan blades.At the same time,this method has strong generalizability and can be used for fault analysis and monitoring of other fan blades.This model can not only detect the cracking failure of the fan blades,but also can be used to analyze the aero-acoustic characteristics of the fan during operation,which is of great significance for perfecting the non-destructive and non-contact detection of fan blades.
黄振;薛宇
深海技术科学太湖实验室连云港中心, 江苏 连云港 222000中国海洋大学 工程学院, 山东 青岛 266000
电子信息工程
气动噪声风力发电叶片裂纹检测故障诊断LES模型半经验模型噪声监测
aerodynamic noisewind power generationblade crack detectionfault diagnosisLES modelsemi empirical modelnoise monitoring
《现代电子技术》 2024 (006)
102-108 / 7
评论