| 注册
首页|期刊导航|现代电子技术|典型遥感影像分类方法适用性分析

典型遥感影像分类方法适用性分析

武英洁 冯勇 徐晓琳 刘思宇 朱辉

现代电子技术2024,Vol.47Issue(6):137-141,5.
现代电子技术2024,Vol.47Issue(6):137-141,5.DOI:10.16652/j.issn.1004-373x.2024.06.022

典型遥感影像分类方法适用性分析

Scalability analysis of typical remote sensing image classification method

武英洁 1冯勇 1徐晓琳 1刘思宇 1朱辉1

作者信息

  • 1. 山东省气象防灾减灾重点实验室, 山东 济南 250031||山东省气象数据中心, 山东 济南 250031
  • 折叠

摘要

Abstract

The classification is an indispensable step to extract information from remote sensing images.Selecting appropriate classifier is very important to improve the classification accuracy.How to choose suitable classification algorithm for specific research is an urgent problem to be solved.An area in the central of Beijing is selected as the research area,the GF-1 data and Landsat 8 data are applied,and the most commonly used and relatively high classification accuracy supervised classification methods such as minimum distance method,maximum likelihood method,and support vector machine method are applied,resperctively.The research is divided into five categories:forest land,grassland,water body,bare soil and buildings.The comparative analysis for the classification results in terms of spatial distribution,area,and accuracy are conducted.The results show that the selection of the classification algorithm mainly depends on the characteristics of the ground features in the study area,among which the minimum distance classification has a higher accuracy when applied to the area with large vegetation cover,the maximum likelihood classification is suitable for the area with many buildings,and the support vector machine has high universality to all kinds of objects.

关键词

遥感影像/分类技术/最小距离分类/最大似然分类/支持向量机/GF-1/Landsat 8

Key words

remote sensing images/classification techniques/minimum distance classification/maximum likelihood classification/support vector machine/GF-1/Landsat 8

分类

信息技术与安全科学

引用本文复制引用

武英洁,冯勇,徐晓琳,刘思宇,朱辉..典型遥感影像分类方法适用性分析[J].现代电子技术,2024,47(6):137-141,5.

基金项目

山东省气象局科研项目(2021SDQXZ06 ()

2022SDQN04) ()

现代电子技术

OA北大核心CSTPCD

1004-373X

访问量0
|
下载量0
段落导航相关论文