|国家科技期刊平台
首页|期刊导航|网络安全与数据治理|基于机器学习建模的液体火箭发动机喷管内型面优化设计

基于机器学习建模的液体火箭发动机喷管内型面优化设计OA

Profile design and optimization of liquid rocket engine nozzle based on machine learning

中文摘要英文摘要

喷管是液体火箭发动机产生推力的重要部件.喷管型面的结构将直接影响燃烧所产生的燃气在喷管中的流动情况,进而对发动机的性能产生影响.采用B样条曲线对抛物面型线进行参数化,计算样本集的流体动力学(Compu-tational Fluid Dynamics,CFD)流场,以比冲为优化变量对喷管性能进行评估.研究表明,基于代理模型优化得到的喷管内型面结构与特征线法计算结果基本一致,比冲计算结果相当,最大误差为 0.28%.通过代理模型和网格变形方法,可实现液体火箭发动机喷管内型面优化设计,提高优化效率.

The nozzle is an important part of the liquid rocket engine to provide the thrust.The structure of the nozzle profile could directly affect the flow of combustion gas in the nozzle,and then impact on the performance of the engine.In this paper,B-spline curve is used to construct the paraboloid profile of the nozzle.Based on the Computational Fluid Dynamics(CFD)flow field of sample set,the nozzle performance is evaluated with specific impulse as the optimal variable.The results show that the optimized nozzle profile obtained by the surrogate model is consistent with that by the characteristic line method,and the maximum error is 0.28%.In this work,the internal profile design and optimization is realized via the surrogate model and mesh auto-deformation method,and the optimization efficiency is improved.

李晨沛;周晨初;高玉闪;胡海峰

西安航天动力研究所, 陕西 西安 710100

内型面比冲机器学习网格变形

internal profilespecific impulsemachine learningmesh auto-deformation method

《网络安全与数据治理》 2024 (002)

42-48 / 7

10.19358/j.issn.2097-1788.2024.02.007

评论