| 注册
首页|期刊导航|信息与控制|基于改进深度强化学习的无人机自主导航方法

基于改进深度强化学习的无人机自主导航方法

郭子恒 蔡晨晓

信息与控制2023,Vol.52Issue(6):736-746,772,12.
信息与控制2023,Vol.52Issue(6):736-746,772,12.DOI:10.13976/j.cnki.xk.2022.0447

基于改进深度强化学习的无人机自主导航方法

Autonomous Navigation Algorithm of UAV Based on Improved Deep-reinforcement-learning

郭子恒 1蔡晨晓1

作者信息

  • 1. 南京理工大学自动化学院,江苏南京 210094
  • 折叠

摘要

Abstract

The deep reinforcement learning algorithm is widely used in UAV navigation tasks.However,in the training process using the fusion prior strategy,the model training speed is slow,and the success rate of navigation decreases due to the linear attenuation of its proportion.First,we estab-lish a virtual UAV environment model and construct the action space based on UAV autonomous navigation.Next,we design the reward function built on the nonsparsity idea.Coupled with the self-adaptive attenuation factor based on state,the weight of prior policy under the different states is ameliorated.Finally,we realize the autonomous navigation decision-making of UAVs using the trained network model.Simulation results manifest that the training time when the navigation suc-cess rate is stable at a high level is reduced by 20%from the prototype algorithm,indicating that we increase the training efficiency and cut down the time cost.In addition,the navigational quality and success rate are slightly enhanced.The proposed algorithm provides a new idea to facilitate the practical use of deep reinforcement learning in UAV autonomous navigation.

关键词

深度强化学习/无人机导航/先验策略/自适应衰减

Key words

deep-reinforcement-learning/UAV navigation/prior policy/self-adaptive attenuation

分类

航空航天

引用本文复制引用

郭子恒,蔡晨晓..基于改进深度强化学习的无人机自主导航方法[J].信息与控制,2023,52(6):736-746,772,12.

基金项目

国家自然科学基金(61973164) (61973164)

信息与控制

OA北大核心CSCDCSTPCD

1002-0411

访问量0
|
下载量0
段落导航相关论文