联邦学习中的隐私保护技术研究OACSTPCD
Research on Privacy Protection Technology in Federated Learning
联邦学习中多个模型在不共享原始数据的情况下通过参数协调进行训练.大量的参数交换使模型不仅容易受到外部使用者的威胁,还会遭到内部参与方的攻击,因此联邦学习中的隐私保护技术研究至关重要.介绍了联邦学习中的隐私保护研究现状;将联邦学习的安全威胁分为外部攻击和内部攻击,并以此分类为基础归纳总结了模型反演攻击、外部重建攻击、外部推断攻击等外部攻击技术和投毒攻击、内部重建攻击、内部推断攻击等内部攻击技术.从攻防对应的角度,归纳总结了中心化差分隐私、本地化差分隐私和分布式差分隐私等数据扰动技术和同态加密、秘密共享和可信执行环境等过程加密技术.最后,分析了联邦学习隐私保护技术的难点,指出了联邦学习隐私保护技术提升的关键方向.
In federated learning,multiple models are trained through parameter coordination without sharing raw data.However,the extensive parameter exchange in this process renders the model vulnerable to threats not only from external users but also from internal participants.Therefore,research on privacy protection techniques in federated learning is crucial.This paper introduces the current research status on privacy protection in federated learning.It classifies the security threats of federated learning into external attacks and internal attacks.Based on this classification,it summarizes external attack techniques such as model inversion attacks,external reconstruction attacks,and external inference attacks,as well as internal attack techniques such as poisoning attacks,internal reconstruction attacks,and internal inference attacks.From the perspective of attack and defense correspondence,this paper summarizes data perturbation techniques such as central differential privacy,local differential privacy,and distributed differential privacy,as well as process encryption techniques such as homomorphic encryption,secret sharing,and trusted execution environment.Finally,the paper analyzes the difficulties of federated learning privacy protection technology and identifies the key directions for its improvement.
刘晓迁;许飞;马卓;袁明;钱汉伟
江苏警官学院计算机信息与网络安全系 南京 210031江苏警官学院计算机信息与网络安全系 南京 210031||南京邮电大学计算机学院 南京 210023江苏警官学院计算机信息与网络安全系 南京 210031||南京大学软件学院 南京 210023
计算机与自动化
联邦学习隐私攻击差分隐私同态加密隐私保护
federated learningprivacy attackdifferential privacyhomomorphic encryptionprivacy protection
《信息安全研究》 2024 (003)
194-201 / 8
国家自然科学基金项目(62202209);2023年江苏高校"青蓝工程"优秀青年骨干教师项目;江苏省高等教育教改研究项目(2023JSJG364);"十四五"江苏省重点学科"网络空间安全"建设项目;江苏省高校哲学社会科学研究项目(2023SJYB0468)
评论