|国家科技期刊平台
首页|期刊导航|信息工程大学学报|基于改进蚁群的异构平台负载均衡调度算法

基于改进蚁群的异构平台负载均衡调度算法OA

Load Balancing Scheduling Algorithm for Heterogeneous Platform Based on Improved Ant Colony Optimization

中文摘要英文摘要

针对目前异构平台中信号处理任务的调度算法单一、处理器资源浪费等问题,提出了一种面向异构系统的Q学习改进蚁群算法的负载均衡调度算法.算法针对计算密集型和通信密集型任务的不同需求,设计了分流排序法进行任务优先级排序;通过场景适配将Q学习和蚁群算法,与异构平台中的任务调度进行映射.通过奖励函数计算Q-Table,作为蚁群算法的初始信息素,加快了蚁群的收敛速度;根据处理器的实时负载,设计负载矩阵,实现了动态调整系统负载均衡;利用伪随机比例规则选择处理器,通过任务之间的约束关系形成调度列表来完成任务的分配.最后,通过随机生成的有向无环图进行仿真实验,结果表明算法在减小最大完工时间(调度长度)和提高处理器利用率方面均有明显的改进.

To address the problems of single scheduling algorithms and wasted processor resources for signal processing tasks in current heterogeneous platforms,a load balancing scheduling algorithm with Q-learning enhanced ant colony algorithm for heterogeneous systems is proposed.The algorithm is designed to prioritize tasks by a triage sorting method for the different needs of computation-inten-sive and communication-intensive tasks.Q-learning and ant colony algorithms are mapped to task scheduling in heterogeneous signal processing platforms through scenario adaptation.The Q-table is dynamically computed using the reward function and is used as the initial pheromone of the ant colo-ny algorithm,which speeds up the convergence of the ant colony.The load matrix is designed to dy-namically adjust system load balancing according to the real-time load on the processor.Pseudo-ran-dom scaling rules are used to make processor selections.Tasks are assigned by creating a schedule list with constraint relationships between tasks.Finally,simulation experiments are performed with randomly generated directed acyclic graphs.The results show significant improvements in both the reduction of the maximum completion time(scheduling length)and the increase in processor utiliza-tion.

李宇东;马金全;胡泽明;岳春生;谢宗甫

信息工程大学,河南 郑州 450001||65022 部队,辽宁 沈阳 110000信息工程大学,河南 郑州 450001

电子信息工程

任务调度异构信号处理平台Q学习蚁群算法

task schedulingheterogeneous platformQ-learningant colony algorithm

《信息工程大学学报》 2024 (001)

30-38 / 9

10.3969/j.issn.1671-0673.2024.01.005

评论