| 注册
首页|期刊导航|中国电机工程学报|基于知识融合和深度强化学习的智能紧急切机决策

基于知识融合和深度强化学习的智能紧急切机决策

李舟平 曾令康 姚伟 胡泽 帅航 汤涌 文劲宇

中国电机工程学报2024,Vol.44Issue(5):1675-1687,中插1,14.
中国电机工程学报2024,Vol.44Issue(5):1675-1687,中插1,14.DOI:10.13334/j.0258-8013.pcsee.222633

基于知识融合和深度强化学习的智能紧急切机决策

Intelligent Emergency Generator Rejection Schemes Based on Knowledge Fusion and Deep Reinforcement Learning

李舟平 1曾令康 1姚伟 1胡泽 1帅航 2汤涌 3文劲宇1

作者信息

  • 1. 强电磁工程与新技术国家重点实验室(华中科技大学电气与电子工程学院),湖北省 武汉市 430074
  • 2. 田纳西大学电气工程与计算机科学系,美国 田纳西州 诺克斯维尔市 37996
  • 3. 中国电力科学研究院有限公司,北京市 海淀区 100192
  • 折叠

摘要

Abstract

Emergency control is an important means of maintaining power system transient security and stability following serious faults.The current popular"human-in-the-loop"offline emergency control decision-making method has some drawbacks,including low efficiency and heavy reliance on expert experience.Therefore,this paper proposes an intelligent emergency generator rejection decision-making method based on knowledge fusion and deep reinforcement learning(DRL).First,a DRL-based emergency generator rejection decision-making framework is built.Then,when the agent deals with multi-generator decisions,the resulting high-dimensional decision space makes the agent training difficult.There are two solutions proposed:decision space compression and the application of a branching dueling Q(BDQ)network.Next,to further improve the exploration efficiency and the decision-making quality of the agent,the knowledge and experience related to emergency generator rejection control are integrated to the agent training.Finally,the simulation results in the 10-machine 39-bus system show that the proposed method can quickly give effective emergency generator rejection decisions in multi-generator decision-making.Applying a BDQ network has better decision performance than decision space compression.The knowledge fusion strategy can guide the agents to reduce ineffective decision-making explorations and improve decision-making performance.

关键词

紧急切机决策/深度强化学习/决策空间/分支竞争Q网络/知识融合

Key words

emergency generator rejection decision/deep reinforcement learning/decision space/branching dueling Q network/knowledge fusion

分类

信息技术与安全科学

引用本文复制引用

李舟平,曾令康,姚伟,胡泽,帅航,汤涌,文劲宇..基于知识融合和深度强化学习的智能紧急切机决策[J].中国电机工程学报,2024,44(5):1675-1687,中插1,14.

基金项目

国家自然科学基金项目(U1866602). Project Supported by National Natural Science Foundation of China(U1866602). (U1866602)

中国电机工程学报

OA北大核心CSTPCD

0258-8013

访问量0
|
下载量0
段落导航相关论文