| 注册
首页|期刊导航|湖北医药学院学报|基于机器学习探究临床联合增强CT影像组学特征对肺结节良恶性的鉴别诊断价值

基于机器学习探究临床联合增强CT影像组学特征对肺结节良恶性的鉴别诊断价值

胡翔宇 沈天赐 王洋洋 董佑红 喻会 陈俊文

湖北医药学院学报2024,Vol.43Issue(1):39-45,7.
湖北医药学院学报2024,Vol.43Issue(1):39-45,7.DOI:10.13819/j.issn.2096-708X.2024.01.008

基于机器学习探究临床联合增强CT影像组学特征对肺结节良恶性的鉴别诊断价值

A Machine Learning-Based Approach Identifying the Value of Clinical and Enhanced CT Imaging Histological Features for the Diagnosis of Benign and Malignant Pulmonary Nodules

胡翔宇 1沈天赐 2王洋洋 3董佑红 4喻会 5陈俊文1

作者信息

  • 1. 湖北医药学院附属襄阳市第一人民医院呼吸科,湖北 襄阳 441000
  • 2. 湖北医药学院附属襄阳市第一人民医院放射科,湖北 襄阳 441000
  • 3. 湖北医药学院附属襄阳市第一人民医院骨科,湖北 襄阳 441000
  • 4. 湖北医药学院附属襄阳市第一人民医院肿瘤科,湖北 襄阳 441000
  • 5. 湖北医药学院附属襄阳市第一人民医院人类疾病斑马鱼模型新药筛选襄阳市重点实验室,湖北 襄阳 441000
  • 折叠

摘要

Abstract

Objective To identify the value of clinical histological features and the enhanced CT imaging features in the di-agnosis of pulmonary nodules by machine learning.Methods A retrospective study was conducted for 89 patients with pul-monary nodules confirmed by surgical specimens in the Xiangyang No.1 People's Hospital from June 2018 to July 2022,in-cluding 37 patients with benign nodules and 52 patients with malignant nodules.The patients were classified into a training set and a validation set at a ratio of 8 ∶ 2.The regions of interest(ROI)in the lesion was extracted during the plain scan,arterial phase and venous phase.The imaging features were extracted by software and screened by univariate analysis,mult-ivariate analysis and least absolute shrinkage and selection operator.Furthermore,machine learning methods were employed to establish the model for predicting the benign or malignant nodules,and the diagram of weighted SHapley Additive exPla-nation(SHAP)values was established.Finally,the decision curve analysis(DCA)was employed to analyze the patient benefits.Results The training set and validation set included 72 and 17 patients,respectively.A total of 2800 imaging fea-tures and 31 clinical features were extracted.After screening,13 imaging features and 4 clinical features were retained.The clinical features of history of underlying lung diseases and cytokeratin 19 fragment antigen 21-1(CYFRA 21-1),as well as the imaging features of burr sign and lobar sign,showed significant differences between the benign and malignant groups(P<0.05).Among the various machine learning methods,XGBoost demonstrated the highest performance.The DCA results indicated good patient benefits.Conclusion The XGBoost model,based on enhanced CT and tumor markers,is of great value in identifying the nature of pulmonary nodules.

关键词

肺结节/影像组学/肿瘤标志物/机器学习/诊断

Key words

Pulmonary nodules/Radiomics/Tumor markers/Machine learning/Diagnosis

引用本文复制引用

胡翔宇,沈天赐,王洋洋,董佑红,喻会,陈俊文..基于机器学习探究临床联合增强CT影像组学特征对肺结节良恶性的鉴别诊断价值[J].湖北医药学院学报,2024,43(1):39-45,7.

基金项目

湖北省自然科学基金(2021CFB126) (2021CFB126)

湖北省卫生健康委科研项目(WJ2023F073) (WJ2023F073)

湖北省"323"攻坚行动襄阳市第一人民医院重点专项科研基金(XYY2022-323) (XYY2022-323)

北京白求恩公益项目基金(SC8185BS) (SC8185BS)

湖北医药学院学报

2096-708X

访问量0
|
下载量0
段落导航相关论文