| 注册
首页|期刊导航|传感技术学报|一种使用深度联合学习的ICS自适应异常检测方法

一种使用深度联合学习的ICS自适应异常检测方法

陈凤华 董金祥

传感技术学报2024,Vol.37Issue(2):241-255,15.
传感技术学报2024,Vol.37Issue(2):241-255,15.DOI:10.3969/j.issn.1004-1699.2024.02.009

一种使用深度联合学习的ICS自适应异常检测方法

Distributed Outlier Detection Method in ICS Based on Improved Self-Adaptive Deep Federating Learning

陈凤华 1董金祥2

作者信息

  • 1. 浙江广厦建设职业技术大学智能制造学院,浙江 东阳 322100
  • 2. 浙江大学计算机学院,浙江 杭州 310058
  • 折叠

摘要

Abstract

In order to improve the accuracy,timeliness and deployability of outlier detection method for industrial control systems,an adaptive anomaly detection method using deep joint learning in distributed control system is proposed.Specifically,a lightweight local learning model is proposed in the first place to improve the learning speed,make reasonable use of hardware resources,and ensure the feasibility of deployment in distributed edge devices.Secondly,an unsupervised learning model based only on normal data is pro-posed,and the detection mechanism is dynamically adjusted with kernel quantile estimation.Finally,the above methods are integrated into the joint learning framework,so that it can effectively carry out distributed outlier detection near the attack source in the edge seg-ment,so as to minimize the response time of the system to the abnormal attack.

关键词

分布式控制系统/深度学习/联合学习/边缘计算

Key words

distributed control system/deep learning/joint learning/edge computing

分类

计算机与自动化

引用本文复制引用

陈凤华,董金祥..一种使用深度联合学习的ICS自适应异常检测方法[J].传感技术学报,2024,37(2):241-255,15.

基金项目

教育部产学合作协同育人项目(202101154036) (202101154036)

传感技术学报

OA北大核心CSTPCD

1004-1699

访问量0
|
下载量0
段落导航相关论文