| 注册
首页|期刊导航|传感技术学报|基于改进樽海鞘群算法的含瓦斯煤破裂过程信号特征识别

基于改进樽海鞘群算法的含瓦斯煤破裂过程信号特征识别

付华 管智峰 刘尚霖 刘昊 陈子林

传感技术学报2024,Vol.37Issue(2):256-267,12.
传感技术学报2024,Vol.37Issue(2):256-267,12.DOI:10.3969/j.issn.1004-1699.2024.02.010

基于改进樽海鞘群算法的含瓦斯煤破裂过程信号特征识别

Identification of Signal Characteristics of Gas Bearing Coal Fracture Process Based on Improved Salp Swarm Algorithm

付华 1管智峰 1刘尚霖 1刘昊 2陈子林1

作者信息

  • 1. 辽宁工程技术大学电气与控制工程学院,辽宁 葫芦岛 125105
  • 2. 中海油天津化工研究设计院有限公司,天津 300131
  • 折叠

摘要

Abstract

Aiming at the shortcomings of salp swarm algorithms,such as insufficient calculation accuracy and ease to fall into local opti-mum,an improved salp swarm algorithm with multi-strategy integtation is proposed.In the initialization stage,the linear congruence ran-dom generators is introduced.The wild horse optimization algorithm is used for improving the leader's position,and the following mecha-nism of salp swarm algorithm is improved by using golden jackal optimization.Through the comparison of test function optimization ex-periments,it is proved that the improved salp swarm algorithm based on multi-strategy integration has a significant improvement in ro-bustness and stability compared with other intelligent algorithms.The improved salp swarm algorithm with multi-strategy integration is applied to the signal feature identification of the gas bearing coal fracture process.The experimental results show that the proposed sig-nal feature identification model of the gas bearing coal fracture process has a better performance,with an accuracy rate of 93.33%.Com-pared with other identification models,the identification rate is higher.

关键词

含瓦斯煤破裂/智能优化算法/樽海鞘群算法/多策略融合/信号特征识别

Key words

coal containing gas fracture/intelligent optimization algorithm/salp swarm algorithm/multi-strategy fusion/identification of signal characteristics

分类

计算机与自动化

引用本文复制引用

付华,管智峰,刘尚霖,刘昊,陈子林..基于改进樽海鞘群算法的含瓦斯煤破裂过程信号特征识别[J].传感技术学报,2024,37(2):256-267,12.

基金项目

国家自然科学基金项目(51974151 ()

71771111) ()

辽宁省高等学校国(境)外培养项目(2019GJWZD002) (境)

辽宁省高等学校创新团队项目(LT2019007) (LT2019007)

辽宁省教育厅科技项目(LJ2019QL015) (LJ2019QL015)

传感技术学报

OA北大核心CSTPCD

1004-1699

访问量0
|
下载量0
段落导航相关论文