自适应预测时域参数MPC车辆轨迹跟踪控制OACSTPCD
MPC vehicle trajectory tracking control with adaptive predictive horizon parameters
为提升无人车辆在不同车速下轨迹跟踪控制的精度和稳定性,对传统定预测时域模型预测控制(MPC)控制器进行优化处理,提出了一种基于自适应预测时域参数MPC的车辆轨迹跟踪控制策略.通过灰色关联法确定不同目标车速工况下的MPC最优预测时域参数,使用傅里叶逼近法对预测时域参数拟合,结合车辆动力学模型和MPC算法得到可随车速变化预测时域参数的半经验模型.该模型可根据车辆轨迹跟踪目标车速的变化选择相对最优预测时域.通过仿真对比试验和实车测试,结果表明:自适应预测时域参数MPC控制器在减少轨迹跟踪误差的同时提升了求解速度,其横摆角偏差均值降低 14.7%,横向偏差均值降低 21.7%,同时控制器对不同的目标车速工况也具有较强的适应性.
To improve the accuracy and stability of trajectory tracking control of unmanned vehicles at different speeds,the traditional fixed prediction horizon Model Predictive Control(MPC)controller is optimized and a vehicle trajectory tracking control strategy based on adaptive prediction horizon parameter MPC is proposed in this paper.The grey relational method is employed to determine the optimal horizon parameters of MPC under different target speed conditions.The Fourier approximation method is employed to fit the prediction horizon parameters,and the semi-empirical model predicting the horizon parameters with the change of vehicle speed is obtained by combining the vehicle dynamics model and MPC algorithm.The model selects the relative optimal prediction horizon according to the change of the target speed of the vehicle trajectory tracking.Our simulation comparison test and real vehicle test show the adaptive prediction horizon parameter MPC controller reduces the trajectory tracking error and improves the solution speed.The mean yaw angle deviation is reduced by 14.7%and the mean lateral deviation is down by 21.7%.Meanwhile,it is highly adaptable to different vehicle speeds.
吴长水;高绍元
上海工程技术大学 机械与汽车工程学院,上海 201620
交通运输
参数自适应模型预测控制轨迹跟踪车辆控制
parameter adaptationmodel predictive controltrajectory trackingvehicle control
《重庆理工大学学报》 2024 (003)
99-108 / 10
国家自然科学基金项目(51609132)
评论