| 注册
首页|期刊导航|重庆理工大学学报|以对比学习与时序递推提升摘要泛化性的方法

以对比学习与时序递推提升摘要泛化性的方法

汤文亮 陈帝佑 桂玉杰 刘杰明 徐军亮

重庆理工大学学报2024,Vol.38Issue(3):170-180,11.
重庆理工大学学报2024,Vol.38Issue(3):170-180,11.DOI:10.3969/j.issn.1674-8425(z).2024.02.019

以对比学习与时序递推提升摘要泛化性的方法

Improving generalization of summarization with contrastive learning and temporal recursion

汤文亮 1陈帝佑 1桂玉杰 1刘杰明 1徐军亮1

作者信息

  • 1. 华东交通大学 信息工程学院,南昌 330013
  • 折叠

摘要

Abstract

To address the problems of the traditional text summarization models trained based on cross-entropy loss functions,such as degraded performance during inference,low generalization,serious exposure bias phenomenon during generation,and low similarity between the generated summary and the reference summary text,a novel training approach is proposed in this paper.On the one hand,the model itself generates a candidate set using beam search and selects positive and negative samples based on the evaluation scores of the candidate summaries.Two sets of contrastive loss functions are built using"argmax-greedy search probability values"and"label probability values"within the output candidate set.On the other hand,a time-series recursive function designed to operate on the candidate set's sentences guides the model to ensure temporal accuracy when outputting each individual candidate summary and mitigates exposure bias.Our experiments show the method significantly improves the generalization performance on the CNN/DailyMail and Xsum public datasets.The Rouge and BertScore reach 47.54 and 88.51 respectively on CNN/DailyMail while they reach 48.75 and 92.61 on Xsum.

关键词

自然语言处理/文本摘要/对比学习/模型微调

Key words

natural language processing/text summarization/contrastive learning/model fine-tuning

分类

信息技术与安全科学

引用本文复制引用

汤文亮,陈帝佑,桂玉杰,刘杰明,徐军亮..以对比学习与时序递推提升摘要泛化性的方法[J].重庆理工大学学报,2024,38(3):170-180,11.

基金项目

国家自然科学基金项目(52062016) (52062016)

江西省重点研发计划(20203BBE53034) (20203BBE53034)

江西省03专项及5G项目(20224ABC03A16) (20224ABC03A16)

重庆理工大学学报

OA北大核心

1674-8425

访问量0
|
下载量0
段落导航相关论文