基于随机优化算法的天然气管道运行优化研究综述OACSTPCD
Survey of research on natural gas pipeline operation optimization based on stochastic optimization algorithms
在"双碳"目标背景下,天然气管道的运行优化可以最大程度地实现降本增效减碳,因而得到了广泛且深度的关注.与确定性算法不同,随机优化算法在处理大规模管道和混合整数非线性规划问题上优于经典确定性算法.为此,对基于随机优化算法的天然气管道运行优化进行了调研.首先,介绍了天然气管道运行的数学模型;其次,采用随机优化算法求解模型最优调度结果,分别对遗传、粒子群、蚁群以及模拟退火4 类算法在天然气管道运行中的应用进行了分析、对比和归纳.最后,对天然气管道运行优化的技术挑战与发展趋势进行了探讨.
Against the backdrop of China's"dual-carbon"goals,the optimization of natural gas pipeline operations has attracted keen academic interest as it can effectively cut costs,improve efficiency,and help achieve carbon reduction.Stochastic optimization algorithms show advantages over classical deterministic algorithms in dealing with large-scale pipeline networks and mixed-integer nonlinear programming(MINLP)problems.This paper investigates the optimization of natural gas pipeline operations based on stochastic optimization algorithms.Firstly,a mathematical model for natural gas pipeline operations is built.Secondly,stochastic optimization algorithms are employed to achieve optimal scheduling results.Four types of algorithms including genetic algorithms,particle swarm optimization,ant colony optimization,and simulated annealing are employed to analyze,compare,and generalize their applications in natural gas pipeline operations.Finally,the technical challenges and development trends of natural gas pipeline network operation optimization technology are discussed.
梁兵;董莎莎;任玉清;何宇琪;伍连碧;刘筱;廖勇
中国石油西南油气田分公司重庆气矿,重庆 400707重庆锦禹云能源科技有限公司,重庆 400050重庆大学 微电子与通信工程学院,重庆 400044
计算机与自动化
天然气管道随机优化运行优化智能调度
natural gaspipe networkstochastic optimizationoperation optimizationintelligent scheduling
《重庆理工大学学报》 2024 (003)
226-235 / 10
中国石油西南油气田分公司重庆气矿科技项目(22-11)
评论