基于两步迭代收缩法的多稀疏空间图像快速重构方法OACSTPCD
A Fast Reconstruction Method of Multi-Sparse Space Image Based on Two-Step Iterative Shrinkage Method
由于多稀疏空间图像重构时,像素范围选取过大、峰值信噪比低以及重构时间长,导致图像重构方法存在重构效果差的问题,提出基于两步迭代收缩法的多稀疏空间图像快速重构方法.明确多稀疏空间图像重构存在的问题,在明确问题后,以迭代收缩阈值算法为基础,引入迭代加权收缩算法,结合每一轮迭代结果作为初值,完成图像重构的两步迭代收缩法设计,实现多稀疏空间图像快速重构.实验结果表明:应用该方法后的重构多稀疏空间图像峰值信噪比达到 37.9 dB以上,图像重构时间仅为16.0 ms,图像结构相似性达到了0.98以上,并且重构多稀疏空间图像的效果更好,经过实验分析证实了所提方法具备可行性.
Image reconstruction methods have the problem of poor reconstruction effect due to the large pixel range selection,low peak signal-to-noise ratio and long reconstruction time in multi-sparse space image reconstruction.A fast reconstruction method of multi-sparse space image based on two-step iterative contraction is proposed.The problems existing in multi-sparse space image reconstruction were clarified.The iterative weighted shrinkage algorithm was introduced based on the iterative shrinkage threshold algorithm after iden-tifying the problems,and the results of each iteration were combined as initial values,the two-step iterative shrinkage method design of image reconstruction was completed to realize the rapid reconstruction of multi-sparse space image.The experimental results show that the peak signal-to-noise ratio of reconstructed multi-sparse space images can reach more than 37.9 dB,image reconstruction time is only 16.0 ms,the image structure similarity can reach more than 0.98,and the reconstruction effect of multi-sparse space images is better.The feasibility of method has been verified by experimental analysis.
许学添;郑禹
广东司法警官职业学院信息管理系,广东 广州 510520安徽建筑大学机械与电气工程学院,安徽 合肥 230601
计算机与自动化
多稀疏空间图像图像重构两步迭代收缩法迭代加权收缩算法迭代收缩阈值算法
multi-sparse space imageimage reconstructiontwo-step iterative shrinkage methoditerative weighted shrinkage algorithmiterative shrinkage threshold algorithm
《电子器件》 2024 (001)
145-150 / 6
2022年中国高校产学研创新基金新一代信息技术创新项目(2022IT072);2023年广东省普通高校特色创新类项目(2023KTSCX295);国家自然科学基金青年科学基金(81600808)
评论