| 注册
首页|期刊导航|电力需求侧管理|基于最优特征和改进随机森林的非侵入式负荷辨识方法

基于最优特征和改进随机森林的非侵入式负荷辨识方法

李利刚 刘浩 陈建强 王昊川 罗世超 高源 李凤朝

电力需求侧管理2024,Vol.26Issue(3):55-61,7.
电力需求侧管理2024,Vol.26Issue(3):55-61,7.DOI:10.3969/j.issn.1009-1831.2024.03.009

基于最优特征和改进随机森林的非侵入式负荷辨识方法

Non-intrusive load identification method based on optimal signatures and improved random forest

李利刚 1刘浩 2陈建强 1王昊川 1罗世超 1高源 1李凤朝1

作者信息

  • 1. 国网天津市电力公司 宝坻供电分公司,天津 301800
  • 2. 天津求实智源科技有限公司,天津 300392
  • 折叠

摘要

Abstract

Non-intrusive load monitoring method is a critical technology for realizing power system intelligence,which helps to optimize en-ergy management and promote efficient energy utilization.In order to cope with the existing problems of feature redundancy,limited recog-nition accuracy and computational inefficiency,a novel non-intrusive load identification method based on optimal signatures and improved random forest is proposed.Firstly,the optimal feature combination is autonomously determined by recursive feature elimination method to reduce the information redundancy.Then load identification is realized by constructing a weighted random forest model.The weights are established by utilizing out-of-bag data.Construction parameters of random forest are optimized using the improved whale algorithm.Ulti-mately,the experimental results prove the accuracy and superiority of the proposed load identification method.

关键词

非侵入式负荷监测/负荷辨识/随机森林/递归特征消除/鲸鱼算法

Key words

non-intrusive load monitoring/load identification/random forest/recursive feature elimination/whale optimization algorithm

分类

信息技术与安全科学

引用本文复制引用

李利刚,刘浩,陈建强,王昊川,罗世超,高源,李凤朝..基于最优特征和改进随机森林的非侵入式负荷辨识方法[J].电力需求侧管理,2024,26(3):55-61,7.

基金项目

陕西省自然科学基础研究计划资助项目(2023-JC-YB-335) (2023-JC-YB-335)

电力需求侧管理

OACSTPCD

1009-1831

访问量0
|
下载量0
段落导航相关论文