|国家科技期刊平台
首页|期刊导航|湖南大学学报(自然科学版)|基于DREAM_ZS算法的EIT电阻率反演方法研究

基于DREAM_ZS算法的EIT电阻率反演方法研究OA北大核心CSTPCD

Research on EIT Conductivity Inversion Method Based on DREAM_ZS Algorithm

中文摘要英文摘要

针对电阻抗成像(EIT)中的电阻率反演及其不确定性量化问题,提出基于贝叶斯理论的不确定性分析方法.首先,利用反向传播(BP)神经网络模型作为正问题替代模型,取得了计算精度高的结果,并且大大提高计算效率.然后,采用基于贝叶斯理论的自适应差分进化Metropolis抽样(DREAM_ZS)算法对电阻率进行反演,并对不同激励模式和不同先验分布进行了对比分析.对模拟头部的4层同心圆模型的反演结果显示,DREAM_ZS抽样算法能够对4个参数进行准确识别,相对激励模式的反演效果最优.4个参数的不确定性程度不同,头皮电阻率不确定性最小,敏感性最强,其次是颅骨,大脑和脑脊液的不确定性较大.进而,对高维参数的圆模型进行仿真,采用相对激励模式,DREAM_ZS抽样算法能够准确反演二维圆模型的各个参数.参数的先验分布为正态分布时,与均匀分布相比,其反演结果不确定性小,对算法的识别效果更强.

Aiming at resistivity inversion and uncertainty quantification in electrical impedance tomography(EIT),an uncertainty analysis method is proposed based on Bayesian theory.Firstly,the Back Propagation(BP)neural network model is used as a substitute model for the forward problem,the results with high calculation accuracy are obtained,and the calculation efficiency is greatly improved.Then,the Differential Evolution Adaptive Metropolis(DREAM_ZS)sampling algorithm based on Bayesian theory is used for the resistivity reconstruction,and different excitation modes and prior distributions are compared and analyzed.The inversion results of the four-layer concentric circle model simulating the head show that the DREAM_ZS sampling algorithm can accurately identify the four parameters,and the inversion effect of the relative excitation mode is the best.The uncertainty of the four parameters is different.The scalp resistivity has the minimum uncertainty and the strongest sensitivity,and then the skull,the brain,and the cerebrospinal fluid show the maximum uncertainty.Furthermore,the circular model with high-dimensional parameters is simulated,and the relative excitation mode is adopted.DREAM_ZS sampling algorithm can accurately invert the parameters of the two-dimensional circular model.When the prior distribution of the parameters is normal distribution,compared with the uniform distribution,the uncertainty of the inversion result is less,and the recognition effect of the algorithm is better.

李颖;马重蕾;赵营鸽;王冠雄;郝虎鹏

河北工业大学 生命科学与健康工程学院,天津 300130||河北工业大学 河北省生物电磁与神经工程重点实验室,天津 300130||河北工业大学 天津市生物电工与智能健康重点实验室,天津 300130河北工业大学 河北省生物电磁与神经工程重点实验室,天津 300130||河北工业大学 天津市生物电工与智能健康重点实验室,天津 300130河北工业大学 天津市生物电工与智能健康重点实验室,天津 300130||新乡医学院三全学院 智能医学工程学院,河南 新乡 453003河北工业大学 河北省生物电磁与神经工程重点实验室,天津 300130

动力与电气工程

电阻抗成像参数反演贝叶斯理论BP神经网络DREAM_ZS算法

electrical impedance tomographyparameter inversionBayesian theoryBP neural networkDREAM_ZS algorithm

《湖南大学学报(自然科学版)》 2024 (002)

93-103 / 11

河北省自然科学基金资助项目(E2015202050),Natural Science Foundation of Hebei Province(E2015202050)

10.16339/j.cnki.hdxbzkb.2024229

评论