| 注册
首页|期刊导航|湖南大学学报(自然科学版)|基于ISSA-HKLSSVM的浮选精矿品位预测方法

基于ISSA-HKLSSVM的浮选精矿品位预测方法

高云鹏 罗芸 孟茹 张微 赵海利

湖南大学学报(自然科学版)2024,Vol.51Issue(2):111-120,10.
湖南大学学报(自然科学版)2024,Vol.51Issue(2):111-120,10.DOI:10.16339/j.cnki.hdxbzkb.2024231

基于ISSA-HKLSSVM的浮选精矿品位预测方法

A Method for Predicting Flotation Concentrate Grade Based on ISSA-HKLSSVM

高云鹏 1罗芸 1孟茹 1张微 1赵海利2

作者信息

  • 1. 湖南大学 电气与信息工程学院,湖南 长沙 410082
  • 2. 矿冶过程自动控制技术国家重点实验室,北京 100160||矿冶过程自动控制技术北京市重点实验室,北京 100160
  • 折叠

摘要

Abstract

A flotation process concentrate grade prediction method based on the Improved Sparrow Search Algorithm(ISSA)optimized Hybrid Kernel Least Squares Support Vector Machine(HKLSSVM),a flotation process concentrate grade prediction method is proposed to address the issues of delayed variables,coupling characteristics,and limited modeling sample size in the flotation process,which make it difficult to accurately predict the concentrate grade.Firstly,collect data from the flotation site current carrying X-ray fluorescence grade analyzer as modeling variables and preprocess them to establish a prediction model based on the Least Squares Vector Machine.On this basis,a new mixed kernel function is constructed to map the input space to the high-dimensional feature space.Then,an Improved Sparrow Search Algorithm is introduced to optimize the model parameters,and an ISSA-HKLSSVM method is proposed to achieve concentrate grade prediction.Finally,a flotation concentrate grade prediction system based on LabVIEW is developed to verify the proposed method in practice.The experimental results show that the proposed method has a better fitting ability for small sample modeling in the flotation process.It can improve prediction accuracy compared to existing methods,and can achieve accurate online prediction of concentrate grade,providing real-time and reliable concentrate grade feedback information for intelligent control of the flotation process.

关键词

浮选/精矿品位/最小二乘支持向量机/改进麻雀搜索算法/预测模型

Key words

flotation/concentrate grade/least squares support vector machine/improve sparrow search algo-rithm/prediction model

分类

矿业与冶金

引用本文复制引用

高云鹏,罗芸,孟茹,张微,赵海利..基于ISSA-HKLSSVM的浮选精矿品位预测方法[J].湖南大学学报(自然科学版),2024,51(2):111-120,10.

基金项目

国家重点研发计划资助项目(2021YFF0602402),National Key Research and Development Program of China(2021YFF060 2402) (2021YFF0602402)

矿冶过程自动控制技术国家重点实验室开放基金(BGRIMM-KZSKL-2020-09),Open Foundation of State Key Laboratory of Pro-cess Automation in Mining&Metallurgy(BGRIMM-KZSKL-2020-09) (BGRIMM-KZSKL-2020-09)

湖南大学学报(自然科学版)

OA北大核心CSTPCD

1674-2974

访问量0
|
下载量0
段落导航相关论文