| 注册
首页|期刊导航|湖南大学学报(自然科学版)|基于BS-TabNet和LSSA的车架智能轻量化设计

基于BS-TabNet和LSSA的车架智能轻量化设计

聂昕 刘文涛 陈少伟 张承霖 陈勇 杨昊

湖南大学学报(自然科学版)2024,Vol.51Issue(2):163-176,14.
湖南大学学报(自然科学版)2024,Vol.51Issue(2):163-176,14.DOI:10.16339/j.cnki.hdxbzkb.2024155

基于BS-TabNet和LSSA的车架智能轻量化设计

Intelligent Lightweight Chassis Design Based on BS-TabNet and LSSA

聂昕 1刘文涛 2陈少伟 1张承霖 1陈勇 1杨昊3

作者信息

  • 1. 湖南大学 整车先进设计制造技术全国重点实验室,湖南 长沙 410082
  • 2. 湖南大学 整车先进设计制造技术全国重点实验室,湖南 长沙 410082||株洲中车时代电气股份有限公司,湖南 株洲 412000
  • 3. 湖大艾盛汽车技术开发有限公司,湖南 长沙 410205
  • 折叠

摘要

Abstract

In order to address the issues of long design cycles,high design complexity,and excessive reliance on engineer experience in traditional lightweight design of tractor chassis,an intelligent lightweight design method is proposed.Firstly chassis performance data is obtained through Design of Experiments(DOE)combined simulation.Then,the BS-TabNet model is constructed based on the TabNet algorithm,Bayesian optimization algorithm,and SHapley Additive exPlanation(SHAP)theory.This model is used to learn from the chassis performance data and generate a surrogate model for the chassis.Finally,the Levy flight strategy is applied to improve the Sparrow Search Algorithm(SSA),resulting in the Levy Sparrow Search Algorithm(LSSA),which is used to solve the lightweight design task and find the optimal structural parameters for the chassis.Compared with traditional machine learning algorithms,the BS-TabNet model shows higher accuracy,stability,and interpretability.Its accuracy reaches around 0.98,stability is improved by over 50%,and it has stronger interpretability,addressing the poor performance of deep learning on tabular data.Compared with traditional swarm intelligence optimization algorithms,the LSSA algorithm can obtain better optimization results.While meeting other performance requirements,it achieves a 5.64%reduction in chassis weight.The intelligent lightweight design method combines artificial intelligence with chassis lightweight design,and it can save a significant amount of design time and improve design efficiency.

关键词

深度学习/贝叶斯优化/车架设计/TabNet/SHAP/SSA

Key words

deep learning/Bayesian optimization/chassis design/TabNet/SHAP/SSA

分类

交通工程

引用本文复制引用

聂昕,刘文涛,陈少伟,张承霖,陈勇,杨昊..基于BS-TabNet和LSSA的车架智能轻量化设计[J].湖南大学学报(自然科学版),2024,51(2):163-176,14.

基金项目

广西区科技计划重大专项(桂科AA23062072),Guangxi Science and Technology Major Program(AA23062072) (桂科AA23062072)

柳州市科技计划重大专项(2022ABA0104 ()

2022ABB0101),Liuzhou Science and Technology Major Program(2022ABA0104 ()

2022ABB0101) ()

国家重点研发计划资助项目(2019YFB1706504),National Key Research and Development Program of China(2019YFB1706504) (2019YFB1706504)

湖南大学学报(自然科学版)

OA北大核心CSTPCD

1674-2974

访问量0
|
下载量0
段落导航相关论文