|国家科技期刊平台
首页|期刊导航|华中科技大学学报(自然科学版)|基于节点混合阻塞力的影响阻塞最大化算法

基于节点混合阻塞力的影响阻塞最大化算法OA北大核心CSTPCD

Mixed-blocking-ability-based algorithm for influence blocking maximization

中文摘要英文摘要

针对社交网络中影响阻塞最大化问题,在竞争独立级联模型下引入节点混合阻塞力的概念,提出一种贪心启发式求解算法.首先,借助节点影响概率的计算方法,给出度量节点阻塞能力和扩散能力的方法,分别刻画节点对负面信息和正面信息传播范围的影响;然后,融合这两种能力计算出节点的混合阻塞力.算法在每轮迭代中优先选择混合阻塞力最大的节点作为传播正面信息的阻塞节点.在典型社交网络实例上的实验表明:与现有的算法相比,该算法所选出的阻塞节点对负面信息有着更好的阻塞效果.

To solve the problem of influence blocking maximization in social networks,the concept of mixed blocking force of nodes based on the competitive independent cascade model was introduced,then a greedy heuristic was proposed.With the help of the existing method for calculating the influence probability of nodes,new measures for the blocking ability and diffusion ability of nodes were given,which were used to describe the impact of nodes on the spread of negative information and positive information respectively.Combining with these two capabilities,the mixed blocking force of a node can be calculated.The greedy algorithm selected a node with the largest mixed blocking force as a blocking node during each iteration.Compared with several existing algorithms,it can be seen that these blocking nodes selected by the greedy algorithm have better effective in blocking negative information on classic social network instances.

陈卫东;朱颖慧;钟昊

华南师范大学计算机学院,广东 广州 510631

计算机与自动化

社交网络竞争独立级联模型权重级联模型影响最大化影响阻塞最大化

social networkcompetitive independent cascade modelweight cascade modelinfluence maximizationinfluence blocking maximization

《华中科技大学学报(自然科学版)》 2024 (002)

55-61 / 7

国家自然科学基金资助项目(61370003).

10.13245/j.hust.240211

评论