|国家科技期刊平台
首页|期刊导航|华中科技大学学报(自然科学版)|基于小波自编码器的图像盲去噪算法

基于小波自编码器的图像盲去噪算法OA北大核心CSTPCD

Blind image denoising method based on wavelet autoencoder

中文摘要英文摘要

为解决基于深度学习图像去噪方法在图像盲去噪任务中去噪能力有限和去噪效果不佳的问题,构造了小波自编码器(Wavelet-AE),并用于图像盲去噪.首先,使用Haar小波构造小波卷积层(DWT)与逆小波卷积层(IDWT);然后,分别使用DWT和IDWT构建下采样块和上采样块;最后,使用下采样块和上采样块构造小波自编码器.Wavelet-AE可以建立噪声图像与干净图像在特征空间中的映射关系,进而具备更好的图像盲去噪能力.为定量评价所提方法的图像盲去噪能力,将峰值信噪比和结构相似性作为评价指标.在Kodak和SIDD数据集上的图像盲去噪实验结果表明:Wavelet-AE与一些先进的传统方法和深度网络去噪方法相比具有更好的盲去噪能力,平均峰值信噪比(PSNR)最大可提高4.58 dB,平均结构相似性(SSIM)最大可提高0.149.

In order to solve the problem that the depth learning based image denoising method has limited denoising ability and poor denoising effect in the blind image denoising task,a wavelet autoencoder(Wavelet-AE)was constructed and it was applied to blind image denoising.Firstly,Haar wavelet was used to construct wavelet convolution layer(DWT)and inverse wavelet convolution layer(IDWT).Secondly,DWT and IDWT were used to build down sampling block and up sampling block respectively.Finally,a wavelet autoencoder was constructed using down-sampling blocks and up-sampling blocks.Wavelet-AE can establish the mapping relationship between noisy images and clean images in the feature space,thus it has better ability for blind image denoising.To quantitatively evaluate the blind image denoising ability of the proposed method,the peak signal to noise ratio and structural similarity were used as evaluation indicators.The experimental results of image blind denoising on Kodak and SIDD datasets show that Wavelet-AE has better blind denoising ability than some advanced traditional methods and depth network denoising methods.The average peak signal to noise ratio(PSNR)can be increased by 4.58 dB at most,and the average structure similarity index measure(SSIM)can be increased by 0.149 at most.

马自萍;谭力刀

北方民族大学数学与信息科学学院,宁夏 银川 750021北方民族大学计算机科学与工程学院,宁夏 银川 750021

计算机与自动化

图像处理图像盲去噪小波自编码器综合噪声真实噪声

image processingblind image denoisingwavelet autoencodercomprehensive noisereal noise

《华中科技大学学报(自然科学版)》 2024 (002)

62-68 / 7

国家自然科学基金资助项目(61462002);宁夏自然科学基金资助项目(2022AAC03268,2020AAC03215).

10.13245/j.hust.240208

评论