| 注册
首页|期刊导航|机械与电子|基于粒子群差分进化极限学习机的电力系统故障诊断模型

基于粒子群差分进化极限学习机的电力系统故障诊断模型

张耀 姚瑶 陈卓 袁子霞 熊国江

机械与电子2024,Vol.42Issue(3):60-64,70,6.
机械与电子2024,Vol.42Issue(3):60-64,70,6.

基于粒子群差分进化极限学习机的电力系统故障诊断模型

Power System Fault Diagnosis Model Via Particle Swarm Differential Evolution-based Extreme Learning Machine

张耀 1姚瑶 1陈卓 1袁子霞 2熊国江2

作者信息

  • 1. 贵州电网有限责任公司电力调度控制中心,贵州 贵阳 550002
  • 2. 贵州大学电气工程学院,贵州 贵阳 550025
  • 折叠

摘要

Abstract

Rapid diagnosis for faults occurring in power systems is of extraordinary significance for timely restoration of power supply and reduction of fault impact.In order to effectively deal with the uncer-tainty in the operation of protective relays and circuit breakers during power system faults,this paper pro-poses an extreme learning machine-based fault diagnosis model based on particle swarm differential evolu-tion algorithm with multiple random variants(MRPSODE).The MRPSODE is used to determine the opti-mal number of nodes in the hidden layer of extreme learning machine to achieve efficient fault diagnosis.A cross-validation method is used to reduce the influence of noise on the original samples to improve the di-agnosis performance.Simulation results of actual fault cases show that the proposed method can success-fully diagnose complex faults and is competitive compared with other methods.

关键词

故障诊断/极限学习机/进化算法/交叉验证

Key words

fault diagnosis/extreme learning machine/evolutionary algorithm/cross-validation

分类

信息技术与安全科学

引用本文复制引用

张耀,姚瑶,陈卓,袁子霞,熊国江..基于粒子群差分进化极限学习机的电力系统故障诊断模型[J].机械与电子,2024,42(3):60-64,70,6.

基金项目

国家自然科学基金资助项目(51907035) (51907035)

机械与电子

OACSTPCD

1001-2257

访问量4
|
下载量0
段落导航相关论文