|国家科技期刊平台
首页|期刊导航|农业机械学报|基于Landsat8与Sentinel-1遥感图像融合的土壤含水率反演模型

基于Landsat8与Sentinel-1遥感图像融合的土壤含水率反演模型OA北大核心CSTPCD

Soil Moisture Content Inversion Model Based on Landsat8 and Sentinel-1 Image Fusion

中文摘要英文摘要

针对当前运用单一光学卫星反演土壤含水率时易受到云的影响,单一 SAR卫星反演土壤含水率时易受到地表粗糙度和植被影响的问题,以内蒙古河套灌区沙壕渠为研究区域,以4个深度的土壤含水率为研究对象,分别采用主成分分析(PCA)、施密特正交变换(GS)融合Landsat8和Sentinel-1图像以减少云、植被、土壤粗糙度的影响,并对融合后的图像质量进行评价,然后用融合图像的灰度构建1 134种遥感指数,基于相关系数分析、变量投影重要性分析、灰色关联分析3种变量筛选方法与BP神经网络(BP)、极限学习机(ELM)、随机森林(RF)、支持向量机(SVM)4种机器学习算法的耦合模型反演沙壕渠土壤含水率.研究结果表明:经PCA、GS融合后的融合图像可同时保持Sentinel-1和Landsat8图像的优势,并成功定量反演土壤含水率.基于融合图像构建的三维指数普遍比二维指数对土壤含水率更敏感.在表层土壤含水率反演中,基于GS融合的VIP-ELM模型精度最高(决定系数R2=0.66,均方根误差(RMSE)为1.35%).将GS融合的VIP-ELM模型应用于其他土壤深度含水率的反演后发现,20~40 cm反演精度最高(R2=0.79,RMSE为0.94%),其次是0~10 cm、40~60 cm、10~20 cm.该研究可为多源卫星图像融合反演土壤含水率提供参考.

To address the current problems that a single optical satellite is easily affected by clouds and SAR satellite is easily affected by vegetation and soil roughness when being applied into soil moisture content inversion,taking Shahaoqu of Iletao Irrigation Area as study area,and taking soil moisture content of four depths in April 2019 as study object,PCA and GS were used to fuse Landsat8 and Sentinel-1 images and the quality of the fused images was evaluated.Then a total of 1 134 remote sensing indices were constructed with the gray value of the fused images,and soil moisture content inversion models were constructed based on three variable screening methods(correlation coefficient analysis,variable projection importance analysis and gray correlation analysis)and four machine learning algorithms(BP,ELM,RF,and SVM).The study results showed that the fused images of PCA and GS fusion could successfully maintain the advantages of both Sentinel-1 and Landsat8 images in quantitatively inversion of soil moisture content.The three-dimension indices constructed based on the fused images were generally more sensitive to soil moisture content than two-dimension indices constructed based on fused images.The VIP-ELM model based on GS fusion had the highest accuracy in the surface soil moisture content inversion(R2=0.66,RMSE was 1.35%).When VIP-ELM model based on GS fusion was applied to the soil moisture content inversion at all depths,20~40 cm achieved the best performance(R2=0.79,RMSE was 0.94%),followed by 0~10 cm,40~60 cm and 10~20 cm.This finding can provide astrong reference for using multi-source satellite image fusion to monitor soil moisture content.

陈俊英;项茹;贺玉洁;吴雨箫;殷皓原;张智韬

西北农林科技大学水利与建筑工程学院,陕西杨凌 712100||西北农林科技大学旱区农业水土工程教育部重点实验室,陕西杨凌 712100

农业科学

土壤含水率卫星图像融合机器学习耦合模型

soil moisture contentsatellite image fusionmachine learningcoupled model

《农业机械学报》 2024 (002)

再生水灌溉对土壤微观孔隙结构-水力特性的影响机理与模型研究

208-219 / 12

国家自然科学基金项目(51979234、52279047、52179044、51979232)和国家重点研发计划项目(2022YFD1900404)

10.6041/j.issn.1000-1298.2024.02.020

评论