基于无人机多光谱影像的矮林芳樟叶片含水率与叶水势反演OA北大核心CSTPCD
Inversion of Leaf Water Content and Leaf Water Potential of Cinnamomum camphora Based on UAV Multispectral Images
叶片含水率和叶水势反映植物组织中水分的状态,是衡量植物水分供应和水分利用效率的重要指标.为探究基于不同高度下无人机多光谱影像反演叶片含水率和叶水势模型的差异,本研究在3个飞行高度处理F30、F60、F100(30、60、100 m)下采集多光谱影像数据,通过使用6种光谱反射率+经验植被指数的组合与地面实测数据进行相关性分析,获得不同飞行高度下的光谱反射率+经验植被指数组合与叶片含水率和叶水势的反演模型及其决定系数,以决定系数为依据分别构建支持向量机(SVM)、随机森林(RF)和径向基神经网络(RBFNN)模型,分析不同飞行高度无人机多光谱影像反演芳樟叶片含水率和叶水势的精度.结果发现:3个飞行高度下,基于RF模型的反演精度均高于SVM模型和RBFNN模型.F30处理对叶片含水率与叶水势反演效果均优于F60和F100处理.F30处理对叶片含水率反演的敏感光谱反射率+植被指数组合为红光波段反射率(R)、红边1波段反射率(RE1)、红边2波段反射率(RE2)、近红外波段反射率(NIR)、增强型植被指数(EVI)、土壤调节植被指数(SAVI).RF模型训练集的 R2、RMSE、MRE 分别为 0.845、0.548%、0.712%;测试集的 R2、RMSE、MRE 分别为 0.832、0.683%、0.897%.对叶水势反演的敏感光谱反射率+植被指数组合为R、RE2、NIR、EVI、SAVI、花青素反射指数(ARI).RF模型训练集的 R2、RMSE、MRE 分别为 0.814、0.073 MPa、3.550%;测试集的 R2、RMSE、MRE 分别为 0.806、0.095 MPa、4.250%.研究结果表明飞行高度30 m与RF方法分别为反演叶片含水率和叶水势的最优光谱获取高度与最优模型构建方法.本研究可为基于无人机平台的矮林芳樟水分监测提供技术支持,并可为筛选无人机多光谱波段与经验植被指数、实现植物长势参数快速估测提供应用参考.
Leaf water content and leaf water potential reflect the state of water in plant tissues and are important indicators of plant water availability and water use efficiency.To investigate the differences in leaf water content and leaf water potential modelling based on UAV multispectral image inversion at different altitudes,multispectral image data were collected at three flight altitude treatments F30,F60,and F100(30 m,60 m,and 100 m).By using six combinations of spectral reflectance+empirical vegetation index(EVI)and ground data for correlation analysis,the inversion models and their decision coefficients of the combinations of spectral reflectance+EVI with leaf water content and leaf water potential at different flight altitudes were obtained.Support vector machine(SVM),random forest(RF)and radial basis neural network(RBFNN)models were constructed based on the determination coefficients to analyze the accuracy of UAV multispectral inversion models for leaf water content and leaf water potential of aromatic camphor at different flight altitudes.It was found that the inversion accuracy of the RF-based model was higher than that of the SVM model and the RBFNN model at all three flight altitudes.The F30 treatment was better than the F60 and F100 treatments for leaf water content and leaf water potential inversion.The sensitive spectral reflectance+vegetation index combinations for leaf water content inversion in the F30 treatment were reflectance in the red band(R),reflectance in the red-edge 1 band(RE1),reflectance in the red-edge 2 band(RE2),near-infrared reflectance(NIR),and enhanced vegetation index(EVI),soil adjusted vegetation index(SAVI).The R2,RMSE,and MRE for the training set of the RF model were 0.845,0.548%and 0.712%,respectively;and for the test set,the R2,RMSE,and MRE were 0.832,0.683%and 0.897%,respectively.The sensitive spectral reflectance+vegetation index combinations for leaf water potential inversion were R,RE2,NIR,EVI,SAVI,anthocyanin reflectance index(ARI).The R2,RMSE,and MRE for the training set of the RF model were 0.814,0.073 MPa and 3.550%,respectively;and for the test set,R2,RMSE,and MRE were 0.806,0.095 MPa and 4.250%.The results showed that the 30 m flight altitude and RF method were the optimal spectral acquisition altitude and optimal model construction method for inverting leaf water content and leaf water potential,respectively.The research result can provide technical support for the moisture monitoring of Cinnamomum camphora based on UAV platform,and can provide application reference for screening UAV multispectral bands and empirical vegetation indices,and realising rapid estimation of plant growth parameters.
杨宝城;鲁向晖;张海娜;王倩;陈志琪;张杰
南昌工程学院江西省樟树繁育与开发利用工程研究中心,南昌 330099南昌工程学院江西省樟树繁育与开发利用工程研究中心,南昌 330099||江西省鄱阳湖流域生态水利技术创新中心,南昌 330029
林学
矮林芳樟叶片含水率叶水势无人机多光谱飞行高度
Cinnamomum camphoraleaf water contentleaf water potentialunmanned aerial vehicle(UAV)multi-spectralflight altitude
《农业机械学报》 2024 (002)
生物炭配施氮肥对“旱地红壤—矮林芳樟”系统氮素的调控作用及机制
220-230,267 / 12
国家自然科学基金项目(52269013、32060333)、江西省自然科学基金面上项目(20232BAB205031)、江西省主要学科学术和技术带头人培养计划青年项目(20204BCJL23046)、江西省科技厅重大科技专项(20203ABC28W016-01-04)和江西省林业局樟树研究专项(202007-01-04)
评论