| 注册
首页|期刊导航|空间科学学报|面向即时响应的卫星在轨分布式协商智能任务规划

面向即时响应的卫星在轨分布式协商智能任务规划

李英玉 史好迎 赵通

空间科学学报2024,Vol.44Issue(1):159-168,10.
空间科学学报2024,Vol.44Issue(1):159-168,10.DOI:10.11728/cjss2024.01.2022-0074

面向即时响应的卫星在轨分布式协商智能任务规划

On-orbit Distributed Negotiation Intelligent Mission Planning for Instant Response

李英玉 1史好迎 1赵通2

作者信息

  • 1. 中国科学院国家空间科学中心 北京 100190||中国科学院大学 北京 100049
  • 2. 北京大学计算机学院 北京 100871
  • 折叠

摘要

Abstract

The mission planning of LEO remote sensing constellation is a complex multi-objective op-timization problem.At present,there are some problems in satellite mission planning research based on deep reinforcement learning,such as small scale of test data constellation,single optimization objective,repeated task arrangement and poor model adaptability.To solve the above problems,the CON_DQN(Contract network and Deep Q Network,CON_DQN)algorithm is proposed in this paper,which adopts the master-slave on-orbit distributed negotiation mechanism,the slave satellite makes decisions based on the planning,and the master satellite makes multi-objective optimization decisions from the aspects of priority,resource cost and load balancing based on the deep reinforcement learning algorithm,and pro-cesses on-orbit distributed negotiation intelligent mission planning for instant response.Aiming at the scene where the user demand reaches the key observation area dynamically at high frequency,the simu-lation experiment of different scale task sets of 100-star constellation is carried out.The results show that the proposed algorithm has a fast response speed and can achieve higher task benefits.

关键词

在轨任务规划/即时响应/分布式协商/深度强化学习/多目标优化

Key words

On orbit mission planning/Instant response/Distributed negotiation/Deep reinforcement learning/Multiple objective optimization

引用本文复制引用

李英玉,史好迎,赵通..面向即时响应的卫星在轨分布式协商智能任务规划[J].空间科学学报,2024,44(1):159-168,10.

基金项目

中国科学院重点部署项目资助(ZDRW-KT-2016-02) (ZDRW-KT-2016-02)

空间科学学报

OA北大核心CSTPCD

0254-6124

访问量0
|
下载量0
段落导航相关论文