|国家科技期刊平台
首页|期刊导航|空间科学学报|面向即时响应的卫星在轨分布式协商智能任务规划

面向即时响应的卫星在轨分布式协商智能任务规划OA北大核心CSTPCD

On-orbit Distributed Negotiation Intelligent Mission Planning for Instant Response

中文摘要英文摘要

低轨遥感星座任务规划是一个复杂的多目标优化问题,目前基于深度强化学习的卫星任务规划研究存在试验数据星座规模小、优化目标单一、任务重复安排或模型适应性差等问题.针对上述问题,提出CON_DQN(Contract network and Deep Q Network)算法,采用主从星在轨分布式协商机制,从星基于规划决策,主星基于深度强化学习算法决策,从任务优先级、资源代价和负载均衡等方面进行多目标优化,实现面向即时响应的卫星在轨分布式协商智能任务规划.针对用户需求高频动态到达重点观测区域的场景,进行百星级星座不同规模任务集的仿真实验,结果表明本文所提算法的响应速度较快且能达到较高的任务收益.

The mission planning of LEO remote sensing constellation is a complex multi-objective op-timization problem.At present,there are some problems in satellite mission planning research based on deep reinforcement learning,such as small scale of test data constellation,single optimization objective,repeated task arrangement and poor model adaptability.To solve the above problems,the CON_DQN(Contract network and Deep Q Network,CON_DQN)algorithm is proposed in this paper,which adopts the master-slave on-orbit distributed negotiation mechanism,the slave satellite makes decisions based on the planning,and the master satellite makes multi-objective optimization decisions from the aspects of priority,resource cost and load balancing based on the deep reinforcement learning algorithm,and pro-cesses on-orbit distributed negotiation intelligent mission planning for instant response.Aiming at the scene where the user demand reaches the key observation area dynamically at high frequency,the simu-lation experiment of different scale task sets of 100-star constellation is carried out.The results show that the proposed algorithm has a fast response speed and can achieve higher task benefits.

李英玉;史好迎;赵通

中国科学院国家空间科学中心 北京 100190||中国科学院大学 北京 100049北京大学计算机学院 北京 100871

在轨任务规划即时响应分布式协商深度强化学习多目标优化

On orbit mission planningInstant responseDistributed negotiationDeep reinforcement learningMultiple objective optimization

《空间科学学报》 2024 (001)

159-168 / 10

中国科学院重点部署项目资助(ZDRW-KT-2016-02)

10.11728/cjss2024.01.2022-0074

评论