|国家科技期刊平台
首页|期刊导航|人民珠江|基于WPT-ARO-DBN/WPT-EPO-DBN模型的月含沙量多步预测

基于WPT-ARO-DBN/WPT-EPO-DBN模型的月含沙量多步预测OA

Multi-step Prediction of Monthly Sediment Concentration Based on WPT-ARO-DBN/WPT-EPO-DBN Model

中文摘要英文摘要

准确的含沙量多步预测对于区域水土流失治理、防洪减灾等具有重要意义.为提高含沙量多步预测精度,改进深度信念网络(DBN)的预测性能,基于小波包变换(WPT),分别提出人工兔优化(ARO)算法、鹰栖息优化(EPO)算法与DBN组合的月含沙量多步预测模型,通过云南省龙潭站月含沙量时序数据对模型进行验证.首先利用WPT对实例月含沙量时序数据进行3 层分解处理,得到 8 个更具规律的子序列分量;其次介绍ARO、EPO算法原理,利用ARO、EPO对DBN隐藏层神经元数等超参数进行寻优,建立WPT-ARO-DBN、WPT-EPO-DBN 预测模型,并构建WPT-PSO(粒子群算法)-DBN、WPT-DBN 作对比分析模型;最后利用 4 种模型对各子序列分量进行预测,将预测值叠加得到最终月含沙量多步预测结果.结果表明:①WPT-ARO-DBN、WPT-EPO-DBN模型对实例超前1 步—超前4 步月含沙量具有满意的预测效果,对超前5 步具有较好的预测结果,对超前 6 步、超前 7 步的预测效果一般,对超前 8 步的预测精度较差,已不能满足预测精度需求;②WPT-ARO-DBN、WPT-EPO-DBN模型的多步预测效果要优于WPT-PSO-DBN模型,远优于WPT-DBN模型,具有更高的预测精度、更好的泛化能力和更大的预测步长;③ARO、EPO能有效优化DBN超参数,提高DBN预测性能,优化效果优于PSO,WPT-ARO-DBN、WPT-EPO-DBN模型能充分发挥WPT、新型群体智能算法和DBN网络优势,提高月含沙量多步预测精度,且预测精度随着预测步数的增加而降低.

Accurate multi-step sediment concentration prediction is of significance for regional soil erosion control,flood control and disaster reduction.To improve the multi-step prediction accuracy of sediment concentration and the prediction performance of the deep belief network(DBN),this paper proposes a multi-step prediction model of monthly sediment concentration by combining the artificial rabbit optimization(ARO)algorithm,eagle habitat optimization(EPO)algorithm,and DBN based on wavelet packet transform(WPT).The model is validated using time series data of monthly sediment concentration from Longtan Station in Yunnan Province.Firstly,WPT is employed to decompose the time series data of the monthly sediment concentration of the case in three layers,and eight more regular subsequence components are obtained.Secondly,the principles of ARO and EPO algorithms are introduced,and hyperparameters such as the neuron number in the hidden layer of DBN are optimized by ARO and EPO.Meanwhile,WPT-ARO-DBN and WPT-EPO-DBN prediction models are built,and WPT-PSO(particle swarm optimization)-DBN and WPT-DBN are constructed for comparative analysis.Finally,four models are adopted to predict each subsequence component,and the predicted values are superimposed to obtain the multi-step prediction results of the final monthly sediment concentration.The results are as follows.① WPT-ARO-DBN and WPT-EPO-DBN models have satisfactory prediction effects on the monthly sediment concentration of the case from one step ahead to four steps ahead.This yields sound prediction results for five steps ahead.The prediction effect for six steps ahead and seven steps ahead is average,and the prediction accuracy for eight steps ahead is poor and cannot meet the prediction accuracy requirements.②The multi-step prediction performance of WPT-ARO-DBN and WPT-EPO-DBN models is superior to WPT-PSO-DBN models and far superior to WPT-DBN models,with higher prediction accuracy,better generalization ability,and larger prediction step size.③ ARO and EPO can effectively optimize DBN hyperparameters,improve DBN prediction performance,and have better optimization effects than PSO.Additionally,WPT-ARO-DBN and WPT-EPO-DBN models can give full play to the advantages of WPT,new swarm intelligence algorithms and the DBN network and improve the multi-step prediction accuracy of monthly sediment concentration,and the prediction accuracy decreases with the increasing prediction steps.

高雪梅;崔东文

云南省文山州水利电力勘察设计院,云南 文山 663000云南省文山州水务局,云南 文山 663000

地球科学

月含沙量预测深度信念网络人工兔优化算法鹰栖息优化算法小波包变换组合模型

prediction of monthly sediment concentrationdeep belief networkartificial rabbit optimization algorithmeagle perching optimization algorithmwavelet packet transformcombining model

《人民珠江》 2024 (003)

贵中岩溶含水层SO42-运移特征及其硫氧同位素演化机理

69-78 / 10

国家重点研发计划项目(2019YFC0507500);国家自然科学基金项目(41702278);中国地质调查局地质调查项目(DD20221758、DD20190326)

10.3969/j.issn.1001-9235.2024.03.008

评论