| 注册
首页|期刊导航|人民珠江|基于稳健估计和变量分离的大坝监测数据异常值识别方法

基于稳健估计和变量分离的大坝监测数据异常值识别方法

梁汇彬 张瀚 张林松 曹宇鑫 周靖人

人民珠江2024,Vol.45Issue(3):138-145,8.
人民珠江2024,Vol.45Issue(3):138-145,8.DOI:10.3969/j.issn.1001-9235.2024.03.015

基于稳健估计和变量分离的大坝监测数据异常值识别方法

Outlier Detection Method of Dam Monitoring Data Based on Robust Estimation and Variable Separation

梁汇彬 1张瀚 1张林松 1曹宇鑫 1周靖人1

作者信息

  • 1. 四川大学水力学与山区河流开发保护国家重点实验室,四川 成都 610065||四川大学水利水电学院,四川 成都 610065
  • 折叠

摘要

Abstract

The original monitoring data of dams is the most important data to grasp the operation behavior of the dams,and the outliers in the data are the focus during the analysis.Outliers are divided into two categories.One category is caused by measurement errors and should be eliminated or supplemented to avoid affecting subsequent analysis.The other is caused by structural mutations and should be highly valued.At present,main outlier recognition methods in dam engineering are based on traditional mathematical statistics and do not consider the influence of structural anomalies,which results in low recognition accuracy.Therefore,based on an in-depth study of dam monitoring data and outlier characteristics,this paper first employs robust MM estimation to eliminate the normal influence of internal and external factors and then adopts the residual measured value to eliminate the stable abnormal influence by difference before and after.Finally,according to the minimum value method,outlier identification is conducted on the residual values.The application of the measured dam data proves that the proposed method can identify the measurement outliers more effectively and robustly,and avoid the interference of structural stability anomalies.

关键词

异常值识别/时间序列数据/稳健估计/大坝监测/变量分离

Key words

outlier detection/time series data/robust estimation/dam monitoring/variable separation

分类

建筑与水利

引用本文复制引用

梁汇彬,张瀚,张林松,曹宇鑫,周靖人..基于稳健估计和变量分离的大坝监测数据异常值识别方法[J].人民珠江,2024,45(3):138-145,8.

基金项目

四川省科技厅重点研发项目(2022YFS0535) (2022YFS0535)

人民珠江

1001-9235

访问量0
|
下载量0
段落导航相关论文