对偶四元数和四元分裂四元数的代数性质OACSTPCD
Algebraic Properties on Dual Quaternion and Quaternion Split Quaternion
对偶四元数和分裂四元数是处理刚体螺旋运动及姿态控制的有力工具.利用Clifford对偶数概念并借助4×4基元复矩阵,给出了矩阵形式的对偶四元数和分裂四元数的定义,获得对偶四元数矩阵和分裂四元数矩阵的伴随矩阵、逆矩阵、行列式等代数性质,同时指出了它们在内积的定义、共轭与范数表达式、乘积的行列式运算等方面的重要差异性.
Dual quaternion and split quaternion are powerful tools to deal with rigid body spiral motion and attitude control.By using Clifford's concept of dual numbers and with the help of 4×4 primitive complex matrix,the definitions of dual quaternion and split quaternion in matrix form are given,and the algebraic properties such as adjoint matrix,inverse matrix,determinant of dual quaterni-on matrix and split quaternion matrix are obtained.At the same time,their important differences in the definition of inner product,expressions of conjugation and norm,and determinant operations of product are pointed out.
邓勇
喀什大学 数学与统计学院,新疆 喀什 844006
数学
四元数对偶四元数四元分裂四元数代数性质
quaterniondual quaternionquaternion split quaternionalgebraic property
《山西大学学报(自然科学版)》 2024 (002)
287-294 / 8
国家自然科学基金(11201411)
评论