| 注册
首页|期刊导航|中国组织工程研究|溶胶浸渗结合电沉积制备氧化镁-磷酸钙复合抗菌涂层

溶胶浸渗结合电沉积制备氧化镁-磷酸钙复合抗菌涂层

谭俊杰 杜佳恒 文振宇 闫吉元 贺葵 段可 尹一然 李忠

中国组织工程研究2024,Vol.28Issue(29):4663-4670,8.
中国组织工程研究2024,Vol.28Issue(29):4663-4670,8.DOI:10.12307/2024.523

溶胶浸渗结合电沉积制备氧化镁-磷酸钙复合抗菌涂层

Antibacterial magnesium oxide-calcium phosphate composite coating prepared by combining electrodeposition and sol-gel impregnation

谭俊杰 1杜佳恒 1文振宇 1闫吉元 1贺葵 1段可 1尹一然 1李忠1

作者信息

  • 1. 西南医科大学附属医院骨科,四川省骨科置入器械研发及应用技术工程实验室,四川省泸州市 646000
  • 折叠

摘要

Abstract

BACKGROUND:Calcium phosphate(CaP)coatings are widely used to improve the integration of titanium implants into bone but these coatings are associated with risks of infection.It is thus desirable to confer antibacterial properties to CaP coatings. OBJECTIVE:To prepare CaP-MgO composite coatings by impregnating magnesium oxide(MgO)sol into CaP coatings and assess the in vitro antibacterial activities and cytocompatibility. METHODS:An electrolyte was determined by titration and used for CaP coating electrodeposition on titanium(referred to as Ti-CaP).MgO was impregnated into the coating by immersing in an MgO sol with different mass fractions(15%,30%,50%)and subsequently calcined to form MgO-CaP composite coatings,which were recorded as Ti-CaP-15Mg,Ti-CaP-30Mg and Ti-CaP-50Mg,respectively.Microstructure,tensile properties,critical load,and Mg2+ release of coatings in vitro were characterized.Antibacterial activity was assayed using spread plate method by culturing S.aureus on the pure titanium sheet surface and Ti-CaP,Ti-Cap-15mg,Ti-Cap-30mg and Ti-Cap-50mg surfaces for 24 and 48 hours.Mouse osteoblast suspension was inoculated on pure titanium sheets and Ti-CaP,Ti-CaP-15Mg,Ti-CaP-30Mg and Ti-CaP-50Mg coated titanium sheets,respectively.Cell proliferation was detected by CCK-8 assay,and cell survival rate was calculated.The morphology of composite coating soaked in DMEM was also observed. RESULTS AND CONCLUSION:(1)Homogeneous,microporous CaP coatings consisting of octacaclium phosphate crystal flakes were prepared on titanium by electrodeposition.After sol impregnation-calcination,MgO aggregates were filled into the inter-flake voids.The extent of MgO filling and Mg concentration in the coating increased with the number of sol impregnation procedures.When immersed in phosphate buffered saline,all composite coatings actively released Mg2+ within 1 day;subsequently,the Mg2+ release slowed down on day 3.A small amount of Mg2+ release was still detected on day 7.The yield strength,tensile strength and fracture growth rate of Ti-CaP-30Mg coated titanium were not significantly different from those of pure titanium(P>0.05).There was no significant difference in the critical load of Ti-CaP,Ti-CaP-15Mg,Ti-CaP-30Mg and Ti-CaP-50Mg groups(P>0.05).(2)Except that pure titanium sheet and Ti-CaP had no antibacterial properties,the other samples had good antibacterial properties,and the antibacterial rate increased with the increase of MgO content in the coating.(3)After 1 and 3 days of co-culture,the cell survival rate of Ti-CaP-15Mg,Ti-CaP-30Mg and Ti-CaP-50Mg groups was lower than that of pure titanium group and Ti-CaP group(P<0.05).After 5 and 7 days of culture,there was no significant difference in cell survival rate among five groups(P>0.05).The content of MgO in the coating decreased gradually with the time of immersion in the medium.(4)The MgO sol impregnation added antibacterial properties to the CaP coatings while retained their biocompatibility.

关键词

骨科植入物//抗菌/氧化镁/磷酸钙/抗菌涂层/细胞毒性

Key words

orthopedic implant/titanium/antibacterial/magnesium oxide/calcium phosphate/antibacterial coating/cytotoxicity

分类

医药卫生

引用本文复制引用

谭俊杰,杜佳恒,文振宇,闫吉元,贺葵,段可,尹一然,李忠..溶胶浸渗结合电沉积制备氧化镁-磷酸钙复合抗菌涂层[J].中国组织工程研究,2024,28(29):4663-4670,8.

基金项目

四川省科技计划项目(2020YFS0455),项目负责人:尹一然 (2020YFS0455)

四川省科技计划项目(2022YFS0628),项目负责人:闫吉元 (2022YFS0628)

泸州市-西南医科大学科技战略合作项目(2020LZXNYDZ08),项目负责人:段可 (2020LZXNYDZ08)

西南医科大学产学研项目(2022CXY03),项目参与人:段可 Science and Technology Project of Sichuan Province,No.2020YFS0455(to YYR) (2022CXY03)

Science and Technology Project of Sichuan Province,No.2022YFS0628(to YJY) (to YJY)

Joint Project of Luzhou and Southwest Medical University,No.2020LZXNYDZ08(to DK) (to DK)

Production,Teaching and Research Project of Southwest Medical University,No.2022CXY03(to DK) (to DK)

中国组织工程研究

OA北大核心CSTPCD

2095-4344

访问量0
|
下载量0
段落导航相关论文