| 注册
首页|期刊导航|太赫兹科学与电子信息学报|基于动态权重模型的数据不平衡SEI方法

基于动态权重模型的数据不平衡SEI方法

段可欣 闫文君 刘凯 张建廷 李春雷 王艺卉

太赫兹科学与电子信息学报2024,Vol.22Issue(2):142-151,159,11.
太赫兹科学与电子信息学报2024,Vol.22Issue(2):142-151,159,11.DOI:10.11805/TKYDA2023181

基于动态权重模型的数据不平衡SEI方法

Data imbalance SEI method based on dynamic weight model

段可欣 1闫文君 2刘凯 2张建廷 3李春雷 4王艺卉5

作者信息

  • 1. 海军航空大学 信息融合研究所,山东 烟台 264001||91422部队,山东 烟台 265200
  • 2. 海军航空大学 信息融合研究所,山东 烟台 264001
  • 3. 海军研究院,北京 100071
  • 4. 92038部队,山东 青岛 266109
  • 5. 海军航空大学 信息融合研究所,山东 烟台 264001||31401部队,山东 烟台 264099
  • 折叠

摘要

Abstract

To tackle with the problem of decreased recognition accuracy caused by imbalanced individual data distribution in Specific Emitter Identification(SEI),a dynamic weight model based method is proposed for individual identification of radiation sources.A Dynamic Class Weight(DCW)model is built.A moderate initial weight value is obtained by using a meta learning algorithm through two-layer calculation with a small amount of sample data.Then,a new cost sensitive loss function is designed to calculate the backward adjustment of the distance between the predicted value and the true value,which gives the minority learning weight,and moderately increases the attention to the minority data.It is more friendly to the minority.It has obvious advantages in the processing of highly unbalanced data,which alleviates the calculation misleading of the majority of samples in the whole recognition process,thus improving the overall recognition accuracy.

关键词

辐射源个体识别/不平衡数据/动态类权重/元学习/代价敏感损失

Key words

Specific Emitter Identification/unbalanced data/Dynamic Class Weights/meta learning/cost sensitive losses

分类

信息技术与安全科学

引用本文复制引用

段可欣,闫文君,刘凯,张建廷,李春雷,王艺卉..基于动态权重模型的数据不平衡SEI方法[J].太赫兹科学与电子信息学报,2024,22(2):142-151,159,11.

基金项目

国家自然科学基金面上资助项目(62271499 ()

62371465) ()

电磁空间安全全国重点实验室开放基金资助项目 ()

太赫兹科学与电子信息学报

OACSTPCD

2095-4980

访问量0
|
下载量0
段落导航相关论文