| 注册
首页|期刊导航|电子科技大学学报|融合强化学习的实体关系联合抽取模型

融合强化学习的实体关系联合抽取模型

翟社平 李航 亢鑫年 杨锐

电子科技大学学报2024,Vol.53Issue(2):243-251,9.
电子科技大学学报2024,Vol.53Issue(2):243-251,9.DOI:10.12178/1001-0548.2023107

融合强化学习的实体关系联合抽取模型

Entity-Relationship Joint Extraction Model Infused with Reinforcement Learning

翟社平 1李航 2亢鑫年 2杨锐2

作者信息

  • 1. 西安邮电大学计算机学院,西安 710121||陕西省网络数据分析与智能处理重点实验室,西安 710121
  • 2. 西安邮电大学计算机学院,西安 710121
  • 折叠

摘要

Abstract

Existing joint extraction tasks of entities and relationships introduce distant supervision strategies to automatically generate large-scale training data,leading to severe problems of noisy data during data processing.To address the issue of noisy data,this paper proposes an entity relation joint extraction model with reinforcement learning integration.The model consists of two components:reinforcement learning and joint extraction model.The joint extraction model is composed of a graph convolutional network and a multi-head self-attention mechanism.Firstly,reinforcement learning is utilized to eliminate noisy sentences from the original dataset,and the denoised high-quality sentences are input into the joint extraction model.Secondly,the joint extraction model is employed to predict and extract entities and relationships from the input sentences,and provide feedback rewards to the reinforcement learning component to guide it in selecting high-quality sentences.Finally,the reinforcement learning and joint extraction models are jointly trained and iteratively optimized.The experiments demonstrating that the proposed model can effectively address the issue of data noise and outperform baseline methods in entity relationship extraction.

关键词

实体关系联合抽取/噪声数据/强化学习/多头自注意力机制/图卷积网络

Key words

joint extraction of entities and relationships/noisy data/reinforcement learning/multi-head self-attention mechanism/graph convolutional network

分类

信息技术与安全科学

引用本文复制引用

翟社平,李航,亢鑫年,杨锐..融合强化学习的实体关系联合抽取模型[J].电子科技大学学报,2024,53(2):243-251,9.

基金项目

国家自然科学基金(61373116) (61373116)

工业和信息化部通信软科学项目(2018-R-26) (2018-R-26)

陕西省教育厅科学研究计划(18JK0697) (18JK0697)

陕西省重点研发计划(2022GY-038) (2022GY-038)

西安邮电大学研究生创新基金(CXJJYL2021045) (CXJJYL2021045)

陕西省大学生创新创业训练计划(202211664053) (202211664053)

陕西省大学生创新创业训练计划(202211664086) (202211664086)

电子科技大学学报

OA北大核心CSTPCD

1001-0548

访问量0
|
下载量0
段落导航相关论文