基于卷积神经网络视觉成像可见光室内位置感知模型与光源布局OA
Visible light indoor positioning perception model and light source layout based on convolutional neural network visual imaging
针对基于接收信号强度(RSS)的可见光室内位置感知系统部署复杂、稳健性差、定位精度低的问题,提出一种基于卷积神经网络(CNN)视觉成像的可见光室内位置感知模型,并研究了光源布局方式.首先,基于环境光和普通发光二极管光源进行了可见光视觉成像位置感知模型的设计和搭建;然后,通过CNN预训练模型提取图像深度特征;在此基础上通过研究不同光源布局模型中定位精度与光源数量、光源间距之间的关系,优化基于CNN视觉成像的室内位置感知模型的定位精度模型.实验结果表明:与基于RSS的室内位置感知模型相比,当定位误差分别小于2.1 cm和3.9 cm时,所提模型的置信概率分别提高了10%和6.7%;同时,与矩形布局方式和三角布局方式相比,十字布局方式的定位精度分别提高了9.5%和16%.
Aiming at the the problem of complex deployment,poor robustness,and low positioning accuracy in visible light in-door positioning systems based on received signal strength(RSS),a visible light indoor positioning perception model based on convolutional neural network(CNN)visual imaging is proposed,and the layout method of light sources is studied.Firstly,a visi-ble light visual imaging positioning perception model is designed and built based on ambient light and ordinary light-emitting diode(LED)light sources.Then,the deep features of the image are extracted through the pre-trained CNN model.Based on this,the positioning accuracy model of the indoor positioning perception model based on CNN visual imaging is optimized by study-ing the relationship between positioning accuracy and the number of light sources,as well as the spacing between light sources in different light source layout models.The experimental results show that compared with the indoor positioning perception model based on RSS,when the positioning errors are less than 2.1 cm and 3.9 cm respectively,the confidence probabilities of the pro-posed model are increased by 10%and 6.7%respectively.At the same time,compared with the rectangular layout method and the triangular layout method,the positioning accuracy of the cross layout method is improved by 9.5%and 16%respectively.
李帅;张峰;孟祥艳;刘叶楠;张欣
西安工业大学电子信息工程学院,西安 710032
电子信息工程
可见光室内位置感知视觉成像光源布局神经网络
visible light indoor positioning perceptionvisual imaginglight source layoutneural network
《光通信技术》 2024 (002)
42-47 / 6
陕西省科技厅一般项目-工业领域(No.2022GY-072)资助;西安工业大学优秀学位本文培育基金(YS202210)资助.
评论