| 注册
首页|期刊导航|机械科学与技术|迁移学习和CNN的电机故障诊断方法

迁移学习和CNN的电机故障诊断方法

谢锋云 董建坤 符羽 刘翊 肖乾

机械科学与技术2024,Vol.43Issue(3):513-519,7.
机械科学与技术2024,Vol.43Issue(3):513-519,7.DOI:10.13433/j.cnki.1003-8728.20220196

迁移学习和CNN的电机故障诊断方法

Motor Fault Diagnosis Method Based on Migration Learning and CNN

谢锋云 1董建坤 1符羽 1刘翊 2肖乾1

作者信息

  • 1. 华东交通大学机电与车辆工程学院,南昌 330013
  • 2. 国家先进轨道交通装备创新中心,湖南株洲 412001
  • 折叠

摘要

Abstract

Aiming at the problem that the lack of labeled data will lead to poor training of convolutional neural network(CNN),a motor fault diagnosis method based on the combination of migration learning and CNN is proposed for three-phase asynchronous motor fault diagnosis.Firstly,an experimental platform for motor fault diagnosis is built,the label data of input CNN model is obtained by acceleration sensor,and the pre-trained model is obtained through training.Then,the obtained pre-training model is transferred to the target domain with transfer learning,and a small amount of labeled data in the target domain is cleared for training and fine-tuning parameters,and the CNN parameters are optimized by training the labeled data in the target domain.Finally,a new model with good classification ability for the target domain data is obtained,so as to realize the motor fault diagnosis in the case of scarce labeled data in the target domain.By comparing this method with ordinary CNN,variational modal decomposition(VMD)-support vector machine(SVM),VMD-K nearest neighbor(KNN)and VMD-BP neural network recognition models for validation,the results show that the pattern recognition method of migrating CNN model proposed in this paper has better recognition effect.

关键词

CNN/迁移学习/三相异步电机/VMD/故障诊断

Key words

CNN/transfer learning/three phase asynchronous motor/VMD/fault diagnosis

分类

矿业与冶金

引用本文复制引用

谢锋云,董建坤,符羽,刘翊,肖乾..迁移学习和CNN的电机故障诊断方法[J].机械科学与技术,2024,43(3):513-519,7.

基金项目

国家自然科学基金项目(52265068)与江西省自然科学基金项目(20224BAB204050) (52265068)

机械科学与技术

OA北大核心CSTPCD

1003-8728

访问量0
|
下载量0
段落导航相关论文