多元特征驱动的超高层建筑变形状态智能学习与预测OA北大核心CSTPCD
Multi-feature driven intelligent learning and prediction of deformation state of super-tall buildings
为实现基于监测数据的结构未来状态可预测,提出了一种多元特征驱动的超高层建筑变形状态智能学习与预测方法.通过信号自适应分解、响应多维特征分析与子信号相关性分析,实现结构响应数据重构与组合,并基于长短时记忆网络(LSTM)进行多通道学习与多步预测.利用上海中心大厦在台风"梅花"作用下的结构顶部水平位移响应实测数据,揭示位移响应数据具有超低频准静态变形与一阶模态控制振动响应的叠加特征以及时域非平稳特性.通过响应数据重构,形成三组具有不同时间尺度、振动幅值和平稳特性的子信号组合.通过3个独立LSTM模型,实现基于300个时间步数据预测未来1~60个时间步的位移响应.结果表明,在控制未来预测时间步长(60个时间步内)的条件下,所提出的数据驱动的学习预测模型能充分学习与预测已知的位移响应数据特征与物理状态,具备较高的预测精度,归一化误差可控制在10%以内,能实现对超高层建筑变形状态的准确实时预测.
To predict the future state of structures using monitoring data,an intelligent learning and prediction method for estimating the deformation state of super-tall buildings driven by multiple features is proposed.Through self-adaptive signal decomposition,multi-dimensional analysis of response characteristics and sub-signal correlation analysis,structural response data reconstruction and combination are realized,and multi-channel learning and multi-step prediction are performed based on long short-term memory network.Using the measured data of the horizontal displacement response at the top of the Shanghai Tower under the influence of Typhoon Muifa,it is revealed that the displacement response data have superimposed characteristics of ultra-low-frequency quasi-static deformation,fundamental modal control vibration response and non-stationary characteristics in the time domain.Through reconstruction of the response data,three sub-signal combinations with different time scales,vibration amplitudes and stationary characteristics are formed.The displacement response of the next 1-60 time steps are successfully predicted based on 300 time steps of monitoring data via three independent LSTM models.The results show that under the condition of controlling the future prediction time step(in 60 time steps),the data-driven learning prediction model proposed in this study can fully learn and predict the known displacement response data characteristics and physical state with excellent accuracy,the normalization error can be controlled within 10%.The proposed method can predict the deformation state of super-tall buildings accurately in real time.
单伽锃;张茜;吕西林;张其林
同济大学土木工程学院,上海 200092||上海韧性城市与智能防灾工程技术研究中心,上海 200092同济大学土木工程学院,上海 200092
土木建筑
超高层建筑结构健康监测变形状态LSTM模型时序数据
super-tall buildingstructural health monitoringdeformation stateLSTM modeltime series data
《建筑结构学报》 2024 (003)
101-112 / 12
国家自然科学基金项目(51878483,52278312),上海市期智研究院科技合作项目(SYXF0120020109).
评论