| 注册
首页|期刊导航|南京大学学报(自然科学版)|面向站口行人检测的改进型Yolov5s算法

面向站口行人检测的改进型Yolov5s算法

李林红 杨杰 冯志成 朱浩

南京大学学报(自然科学版)2024,Vol.60Issue(1):87-96,10.
南京大学学报(自然科学版)2024,Vol.60Issue(1):87-96,10.DOI:10.13232/j.cnki.jnju.2024.01.009

面向站口行人检测的改进型Yolov5s算法

Improved Yolov5s algorithm for pedestrian detection at station entrances

李林红 1杨杰 1冯志成 1朱浩2

作者信息

  • 1. 江西理工大学电气工程与自动化学院,赣州,341000||江西省磁悬浮技术重点实验室,赣州,341000
  • 2. 江西理工大学电气工程与自动化学院,赣州,341000
  • 折叠

摘要

Abstract

Aiming at the problem that existing pedestrian detection method is difficult to strike a balance between real-time performance and accuracy,an improved Yolov5s model is proposed for efficient pedestrian detection at station entrances.First,the lightweight main network Efficientnet_c is improved based on the improved EfficientNetV1,and the network structure and stacking times of basic units are optimized to enhance the feature extraction capability and speed of the model for small targets at the shallow layer.Secondly,by adjusting the width factor as 1/2 of the basic model,the channel number of feature layer of the model is changed,and the number of model parameters is reduced in the case of small precision loss.Thirdly,a small target detection layer is added to optimize the feature extraction ability of the model and improve the sensitivity and accuracy of the model to small targets.Finally,transfer learning is used to optimize the model,enhance the generalization ability of the model,reduce the learning cost,and further improve the accuracy of the model.The experimental results on the data set collected by the research group show that the accuracy of the proposed algorithm is 92.2%,and the number of model parameters is only 1.4 M.The average inference speed on Tesla P100 GPU is 7.7 ms,which realizes the improvement of model accuracy and inference speed.The results provide a feasible solution for pedestrian detection and traffic statistics of subway and railway station.

关键词

站口行人检测/Yolov5s/EfficientNet_c/宽度因子/小目标检测层/迁移学习

Key words

pedestrian detection at station entrances/Yolov5s/EfficientNet_c/width factor/small object detection layer/transfer learning

分类

信息技术与安全科学

引用本文复制引用

李林红,杨杰,冯志成,朱浩..面向站口行人检测的改进型Yolov5s算法[J].南京大学学报(自然科学版),2024,60(1):87-96,10.

基金项目

国家自然科学基金(62063009) (62063009)

南京大学学报(自然科学版)

OA北大核心CSTPCD

0469-5097

访问量0
|
下载量0
段落导航相关论文