| 注册
首页|期刊导航|南京大学学报(自然科学版)|不完备数据集的邻域容差互信息选择集成分类算法

不完备数据集的邻域容差互信息选择集成分类算法

李丽红 董红瑶 刘文杰 李宝霖 代琪

南京大学学报(自然科学版)2024,Vol.60Issue(1):106-117,12.
南京大学学报(自然科学版)2024,Vol.60Issue(1):106-117,12.DOI:10.13232/j.cnki.jnju.2024.01.011

不完备数据集的邻域容差互信息选择集成分类算法

Neighborhood-tolerance mutual information selection ensemble classification algorithm for incomplete data sets

李丽红 1董红瑶 2刘文杰 3李宝霖 1代琪4

作者信息

  • 1. 华北理工大学理学院,唐山,063210||河北省数据科学与应用重点实验室,华北理工大学,唐山,063210||唐山市工程计算重点实验室,华北理工大学,唐山,063210
  • 2. 华北理工大学理学院,唐山,063210||河北省数据科学与应用重点实验室,华北理工大学,唐山,063210||唐山市工程计算重点实验室,华北理工大学,唐山,063210||首钢矿业公司职工子弟学校,唐山,064404
  • 3. 华北理工大学人工智能学院,唐山,063210
  • 4. 中国石油大学(北京)自动化系,北京,102249
  • 折叠

摘要

Abstract

In order to solve the classification problem of incomplete mixed information systems,the concept of neighborhood-tolerance mutual information is defined by combining neighborhood-tolerance and mutual information theory in granular computing,and a selective ensemble classification algorithm based on neighborhood-tolerance mutual information is proposed by using ensemble learning.In this algorithm,information particles are obtained according to the missing attributes,and the space is constructed by dividing the particles into different layers.A new base classifier is constructed by integrating the BP neural network as the base classifier on different layers.Then,the neighborhood-tolerance mutual information about class attributes is calculated according to the missing attributes of each information particle to measure the importance of each information particle,and the weight of the base classifier is redefined according to the prediction accuracy of the base classifier and the neighborhood-tolerance mutual information.Finally,based on the predicted samples,the weighted ensemble prediction results of base classifier are analyzed and compared with the traditional ensemble classification algorithm.For partial incomplete mixed data sets,the proposed ensemble classification algorithm can effectively improve the classification accuracy.

关键词

不完备混合信息系统/邻域容差互信息/集成学习/分类

Key words

incomplete hybrid information system/neighborhood-tolerance mutual information/ensemble learning/classification

分类

信息技术与安全科学

引用本文复制引用

李丽红,董红瑶,刘文杰,李宝霖,代琪..不完备数据集的邻域容差互信息选择集成分类算法[J].南京大学学报(自然科学版),2024,60(1):106-117,12.

基金项目

河北省数据科学与应用重点实验室项目(10120201),唐山市数据科学重点实验室项目(10120301) (10120201)

南京大学学报(自然科学版)

OA北大核心CSTPCD

0469-5097

访问量0
|
下载量0
段落导航相关论文