| 注册

多采样近似粒集成学习

侯贤宇 陈玉明 吴克寿

南京大学学报(自然科学版)2024,Vol.60Issue(1):118-129,12.
南京大学学报(自然科学版)2024,Vol.60Issue(1):118-129,12.DOI:10.13232/j.cnki.jnju.2024.01.012

多采样近似粒集成学习

A granular ensemble learning based on multi-sampling approximate granulation

侯贤宇 1陈玉明 1吴克寿1

作者信息

  • 1. 厦门理工学院计算机与信息工程学院,厦门,361024
  • 折叠

摘要

Abstract

Granulation is a method to construct the granular data and granular models.In recent years,several granulation methods have been proposed.For instance,similarity granulation based on sample similarity scale,neighborhood granulation derived from neighborhood relationship,rotation granulation based on feature transformation,and so forth,have demonstrated outstanding performance in supervised and unsupervised tasks.Nevertheless,these granulation techniques are formulated on the metric associations of the samples themselves,which result in varying extents of information expansion during the granulation process.This property renders the granules challenging to manage in certain cases.An approach to construct approximate granules using a multi-sampling method is proposed in this paper.This method guarantees a finite amount of granulation.Furthermore,the fixed metric relation is discarded in the granulation process,causing the granules to vary with the chosen approximation set and approximation base model.This variation increases the flexibility of samples in granulation to granules.We present a comprehensive comparison of multi-sampling approximate granulation with multiple granulation methods.The results demonstrate that multi-sampling approximate granulation outperforms other methods in terms of classification performance.Furthermore,we conduct a thorough comparison with various advanced ensemble algorithms,the final results indicate that the granular ensemble model exhibits superior robustness and generalization for classification tasks.

关键词

粒计算/粒表示/多采样近似粒化/重要性采样/粒集成学习

Key words

granular computing/granular representation/multi-sampling approximate granulation/importance sampling/granular ensemble learning

分类

信息技术与安全科学

引用本文复制引用

侯贤宇,陈玉明,吴克寿..多采样近似粒集成学习[J].南京大学学报(自然科学版),2024,60(1):118-129,12.

基金项目

国家自然科学基金(61976183) (61976183)

南京大学学报(自然科学版)

OA北大核心CSTPCD

0469-5097

访问量0
|
下载量0
段落导航相关论文