多采样近似粒集成学习OA北大核心CSTPCD
A granular ensemble learning based on multi-sampling approximate granulation
粒化是一种构建粒数据与粒模型的方法.近些年来,有多种粒化方法被提出,如基于样本相似度尺度的相似度粒化、基于邻域关系的邻域粒化和基于特征尺度变换的旋转粒化等.这些粒化方法都在监督与非监督任务中获得优秀的表现.但是这些粒化方法都是基于样本本身的度量关系构建的,会导致样本在粒化过程中的信息量呈现不同量级的扩展现象.这一特征使粒化后的粒子在一些情况下难以处理.因此,提出一种基于多采样方法构建近似粒子的粒化方式以保证粒化过程被限制在有限量级,并且在粒化过程中抛弃固定的度量关系式,粒化的结果会随着选取的近似集与近似基模型的不同而变化,使得样本在粒化为粒子时有着更高的灵活性.文中对多采样近似粒化和多种粒化方法进行详细比较,结果表明多采样近似粒化有着更高的分类性能,且与多种先进的集成算法做了详细比较,结果表明在分类任务上多采样近似粒集成模型拥有着更好的鲁棒性与泛化性.
Granulation is a method to construct the granular data and granular models.In recent years,several granulation methods have been proposed.For instance,similarity granulation based on sample similarity scale,neighborhood granulation derived from neighborhood relationship,rotation granulation based on feature transformation,and so forth,have demonstrated outstanding performance in supervised and unsupervised tasks.Nevertheless,these granulation techniques are formulated on the metric associations of the samples themselves,which result in varying extents of information expansion during the granulation process.This property renders the granules challenging to manage in certain cases.An approach to construct approximate granules using a multi-sampling method is proposed in this paper.This method guarantees a finite amount of granulation.Furthermore,the fixed metric relation is discarded in the granulation process,causing the granules to vary with the chosen approximation set and approximation base model.This variation increases the flexibility of samples in granulation to granules.We present a comprehensive comparison of multi-sampling approximate granulation with multiple granulation methods.The results demonstrate that multi-sampling approximate granulation outperforms other methods in terms of classification performance.Furthermore,we conduct a thorough comparison with various advanced ensemble algorithms,the final results indicate that the granular ensemble model exhibits superior robustness and generalization for classification tasks.
侯贤宇;陈玉明;吴克寿
厦门理工学院计算机与信息工程学院,厦门,361024
计算机与自动化
粒计算粒表示多采样近似粒化重要性采样粒集成学习
granular computinggranular representationmulti-sampling approximate granulationimportance samplinggranular ensemble learning
《南京大学学报(自然科学版)》 2024 (001)
118-129 / 12
国家自然科学基金(61976183)
评论