| 注册
首页|期刊导航|雷达科学与技术|基于数据增强的小样本辐射源个体识别方法

基于数据增强的小样本辐射源个体识别方法

王艺卉 闫文君 段可欣 于楷泽

雷达科学与技术2024,Vol.22Issue(1):104-110,118,8.
雷达科学与技术2024,Vol.22Issue(1):104-110,118,8.DOI:10.3969/j.issn.1672-2337.2024.01.014

基于数据增强的小样本辐射源个体识别方法

Few-Shot Sample Specific Emitter Identification Method Based on Data Augmentation

王艺卉 1闫文君 2段可欣 3于楷泽3

作者信息

  • 1. 海军航空大学,山东烟台 264001||31401部队,山东烟台 264001
  • 2. 海军航空大学,山东烟台 264001
  • 3. 海军航空大学,山东烟台 264001||91423部队,山东烟台 264001
  • 折叠

摘要

Abstract

Aiming at the dilemma of low recognition accuracy of few-shot learning and due to difficult acquisition of sample data and incomplete capture sample categories,a method for few-shot specific emitter identification(SEI)based on data enhancement is proposed.Firstly,the dataset is expanded by time domain flipping,amplitude inversion,amplitude scaling and noise processing.Secondly,the noise sequence and the category label are input into the generator to further generate the"false and true"generated samples,which improves the diversity of the generated samples and synchronously completes discrimination and category prediction of true and false samples through the auxiliary classifi-er.Finally,according to the dynamic feedback of the discriminator,the weight of the loss function is gradually adjusted,and the network is further optimized by focusing on high-quality samples to improve the recognition accuracy.

关键词

辐射源个体识别/小样本/数据增强/辅助分类生成对抗网络

Key words

specific emitter identification(SEI)/few-shot samples/data augmentation/auxiliary classifier GAN

分类

信息技术与安全科学

引用本文复制引用

王艺卉,闫文君,段可欣,于楷泽..基于数据增强的小样本辐射源个体识别方法[J].雷达科学与技术,2024,22(1):104-110,118,8.

基金项目

国家自然科学基金面上项目(No.62271499,62371465) (No.62271499,62371465)

电磁空间安全全国重点实验室开放基金 ()

雷达科学与技术

OA北大核心CSTPCD

1672-2337

访问量0
|
下载量0
段落导航相关论文