基于大模型的态势认知智能体OACSTPCD
Research on situation awareness agent based on large models
针对战场态势信息众多、变化趋势认知困难的问题,提出基于大模型的态势认知智能体框架和智能态势认知推演方法.从认知概念出发,结合智能体的抽象性、具身性特点,明确了智能体构建的 3 个关键环节:学习环境、记忆方式和产生知识机制;设计了战场态势认知智能体架构,包括记忆部件、规划部件、执行部件、评估部件以及智能体训练要点.在长期记忆部件中,围绕战场复杂状态建模特点,分析大语言模型、多模态大模型、大序列模型的运用问题.
Aimming at the multitudinous battlefield situation information and the difficulty in recognizing the changing trends,based on large models,a situation awareness agent and an intelligent situation awareness inductive method are pro-posed.Starting from cognitive concepts and combining the abstractness and embodiment characteristics of agents,three key components in the construction of agents have been clarified:learning environment,memory mode,and knowledge generation mechanism.The architecture of the battlefield situation awareness agent is designed,including memory compo-nent,planning component,execution component,evaluation component,and key points for agent training.In the long-term memory component,based on the modeling characteristics of complex battlefield states,the paper discusses the application of large language models,multimodal large models and large sequence models.
孙怡峰;廖树范;吴疆;李福林
战略支援部队信息工程大学, 河南 郑州 450001
大模型态势认知智能体通用人工智能
large modelssituation awarenessagentgeneral artificial intelligence
《指挥控制与仿真》 2024 (002)
1-7 / 7
评论