| 注册
首页|期刊导航|南京大学学报(自然科学版)|基于Transformer的城市三角网格语义分割方法

基于Transformer的城市三角网格语义分割方法

资文杰 贾庆仁 陈浩 李军 景宁

南京大学学报(自然科学版)2024,Vol.60Issue(1):18-25,8.
南京大学学报(自然科学版)2024,Vol.60Issue(1):18-25,8.DOI:10.13232/j.cnki.jnju.2024.01.003

基于Transformer的城市三角网格语义分割方法

Transformer based urban triangle mesh semantic segmentation method

资文杰 1贾庆仁 1陈浩 2李军 2景宁1

作者信息

  • 1. 国防科技大学电子科学学院,长沙,410073
  • 2. 国防科技大学电子科学学院,长沙,410073||自然资源部南方丘陵区自然资源监测监管重点实验室,长沙,410073
  • 折叠

摘要

Abstract

For understanding and analyzing three-dimensional city scenes,semantic segmentation from urban triangle mesh data is a very important method for recognizing objects of different categories.Urban triangle mesh is a spatial three-dimensional geometric data with rich spatial topological relationships,which contains a lot of spatial geometric information.However,existing methods only extract features for each geometric information separately,and simply fuse them for semantic segmentation with difficulty in utilizing the relationship between spatial information,resulting in poor performance in segmenting individual objects of urban triangle mesh data.To solve these problems,we propose a network model UMeT(Urban Mesh Transformer)based on self-attention mechanism Transformer,which contains MLP(Multi-Layer Perceptron)and MeshiT(Mesh in Transformer)module.It not only uses MLP module to extract high-dimensional features,but also uses the MeshiT module to calculate the relationship between various geometric information,effectively mining the hidden relationship in urban triangle mesh data.UMeT extracts high-dimensional features,and ensures spatial invariance of urban triangle mesh data at the same time,improving the accuracy of semantic segmentation.

关键词

城市三角网格/语义分割/Transformer/mesh/自注意力机制

Key words

urban triangle mesh data/semantic segmentation/Transformer/mesh/self-attention mechanism

分类

计算机与自动化

引用本文复制引用

资文杰,贾庆仁,陈浩,李军,景宁..基于Transformer的城市三角网格语义分割方法[J].南京大学学报(自然科学版),2024,60(1):18-25,8.

基金项目

国家自然科学基金(U19A2058,62106276,42101435),湖南省自然科学基金(2021JJ40667) (U19A2058,62106276,42101435)

南京大学学报(自然科学版)

OA北大核心CSTPCD

0469-5097

访问量7
|
下载量0
段落导航相关论文