| 注册
首页|期刊导航|南京大学学报(自然科学版)|面向大图的Top-Rank-K频繁模式挖掘算法

面向大图的Top-Rank-K频繁模式挖掘算法

邹杰军 王欣 石俊豪 兰卓 方宇 张翀 谢文波 沈玲珍

南京大学学报(自然科学版)2024,Vol.60Issue(1):38-52,15.
南京大学学报(自然科学版)2024,Vol.60Issue(1):38-52,15.DOI:10.13232/j.cnki.jnju.2024.01.005

面向大图的Top-Rank-K频繁模式挖掘算法

Top-Rank-K frequent pattern mining algorithm for large graphs

邹杰军 1王欣 1石俊豪 1兰卓 1方宇 1张翀 1谢文波 1沈玲珍1

作者信息

  • 1. 西南石油大学计算机科学学院,成都,610500
  • 折叠

摘要

Abstract

Frequent Pattern Mining(FPM)plays a crucial role in social analytics,which mines patterns and regularities about users'behaviour from vast amounts of social data,thereby provides new insights and decision support for research on social networks.However,it is not easy to set an appropriate support threshold for an FPM task.Moreover,as an NP-hard problem,FPM does not exist a polynomial-time algorithm.To address these problems,an algorithm that does not require an initial support threshold,denoted by ItrMiner,is proposed.In ItrMiner,a new metric which considers both size and support is proposed for measuring the interestingness of a pattern,and this metric is utilized to mine the Top-Rank-K frequent patterns.Meanwhile,to overcome the difficulty caused by the lack of initial support threshold,a pattern-recognition-based strategy and a pattern expansion strategy are proposed,which reduces excessive redundant candidate patterns.Extensive experiments on real and synthetic graphs show that ItrMiner performs well in terms of efficiency and scalability,especially on dense datasets,with a time overhead of only 13.2%of the baseline algorithm Top-K Graph Miner.Furthermore,the pattern expansion strategy is quite effective,which performs up to 9.5 times faster than the counterpart of ItrMinernopt without optimization.

关键词

频繁模式挖掘/社交分析/支持度阈值/兴趣度

Key words

frequent pattern mining/social analytics/support threshold/interestingness

分类

计算机与自动化

引用本文复制引用

邹杰军,王欣,石俊豪,兰卓,方宇,张翀,谢文波,沈玲珍..面向大图的Top-Rank-K频繁模式挖掘算法[J].南京大学学报(自然科学版),2024,60(1):38-52,15.

基金项目

国家自然科学基金(62172102),四川省科技创新人才基金(2022JDRC0009) (62172102)

南京大学学报(自然科学版)

OA北大核心CSTPCD

0469-5097

访问量0
|
下载量0
段落导航相关论文