| 注册
首页|期刊导航|南京大学学报(自然科学版)|基于多阶近邻约束的深度不完整多视图聚类方法

基于多阶近邻约束的深度不完整多视图聚类方法

王梅 王伟东 刘勇 于源泽

南京大学学报(自然科学版)2024,Vol.60Issue(1):53-64,12.
南京大学学报(自然科学版)2024,Vol.60Issue(1):53-64,12.DOI:10.13232/j.cnki.jnju.2024.01.006

基于多阶近邻约束的深度不完整多视图聚类方法

Deep incomplete multi-view clustering based on multi-order neighborhood constraint

王梅 1王伟东 1刘勇 2于源泽1

作者信息

  • 1. 东北石油大学计算机与信息技术学院,大庆,163318
  • 2. 中国人民大学高瓴人工智能学院,北京,100049
  • 折叠

摘要

Abstract

Multi-view clustering is an important unsupervised learning method.However,in real applications,it is difficult to obtain complete multi-view data,which leads to incomplete multi-view clustering problem.Most of the existing incomplete multi-view clustering methods only consider the attribute information of views,but ignore the influence of structure information on clustering,resulting in extracted features cannot fully represent the latent structure of the original data.To address these problems,in this paper,a deep method based on multi-order neighborhood constraints is proposed for incomplete multi-view clustering.Firstly,the deep autoencoder with self-attention is used to obtain the rich complex latent features with cross-view information interaction,and the weighted fusion approach is employed to learn the consistency common information of views.Then,in incomplete multi-view settings,the missing data are fixed up by the consistency common representation of multi-views data.Finally,the multi-order neighborhood constraint mechanism is proposed,which considers the deep structural information within incomplete views and constructs an approximate complete neighborhood graph using the complementarity of multi-views,guiding the encoder to learn more compact and discriminative high-level semantic features.Experimental results show that the proposed method is effective.

关键词

不完整多视图聚类/自注意力/结构信息/多阶近邻

Key words

incomplete multi-view clustering/self-attention/structure information/multi-order neighborhood

分类

计算机与自动化

引用本文复制引用

王梅,王伟东,刘勇,于源泽..基于多阶近邻约束的深度不完整多视图聚类方法[J].南京大学学报(自然科学版),2024,60(1):53-64,12.

基金项目

国家自然科学基金(51774090,62076234),黑龙江省博士后科研启动金资助项目(LBH-Q20080) (51774090,62076234)

南京大学学报(自然科学版)

OA北大核心CSTPCD

0469-5097

访问量0
|
下载量0
段落导航相关论文