知识情境感知的深度知识追踪模型OA北大核心CSTPCD
Knowledge context-aware deep knowledge tracing model
知识追踪通过学习者历史作答数据动态追踪学习者的认知状态并预测他们未来的答题表现,然而,现有的知识追踪模型通常只利用试题中考查的知识点来表征,没有考虑试题本身蕴含的重要知识情境特征,这限制了模型的效果.此外,和融合教育先验的认知诊断方法相比,知识追踪模型的可解释性略有不足.为了解决上述问题,提出一种知识情境感知的深度知识追踪模型,通过知识情境表征模块来获取试题深层次的知识权重、试题难度等知识情境特征.在知识聚合模块中,模型将知识权重嵌入学习者面向试题的作答能力的计算,最后,在学习预测模型中引入猜测和失误因素,通过认知诊断模型来优化实际场景中的预测表现,进一步提高模型的预测性能.和现有方法相比,提出的模型在试题层级上取得了更好的预测结果,同时体现了模型可解释性方面的优势.
Knowledge tracing aims to track learners'cognitive states dynamically and predict their future performance based on their historical response data.However,existing knowledge tracking models usually only utilize the knowledge concepts representing the test without considering the critical knowledge contextual features contained in the test itself,which limits the effect of the model.Moreover,compared to cognitive diagnosis methods that incorporate educational priors,the interpretability of knowledge-tracing models is inadequate.This paper proposes a knowledge context-aware deep knowledge tracing model to address these issues.The model includes a knowledge context representation module to capture deep-level knowledge weights,question difficulty,and other contextual features.In the knowledge aggregation module,the model embeds the knowledge weights into the computation of learners'abilities toward specific questions.Lastly,in the learning prediction model,the factors of guess and error are introduced,and the predictive performance in real-world scenarios is optimized through a cognitive diagnosis model to further improve the model's predictive performance.Compared to existing methods,the model proposed in this paper achieves better prediction results at the question level and demonstrates advantages in model interpretability.
蒲杰;张所娟;陈卫卫
陆军工程大学指挥控制工程学院,南京,210023
计算机与自动化
知识追踪知识情境感知知识权重试题难度认知状态
knowledge tracingknowledge context-awareknowledge weightquestion difficultycognitive state
《南京大学学报(自然科学版)》 2024 (001)
76-86 / 11
国家自然科学基金(62207031),全国教育科学国防军事教育学科"十四五"规划研究课题(JYKY-D2022013)
评论