| 注册
首页|期刊导航|汽车工程学报|矿用无人运输车辆轨迹跟踪控制算法研究

矿用无人运输车辆轨迹跟踪控制算法研究

张博 周彬 夏启 丁能根 杜宇飞 董陆军 张伟

汽车工程学报2024,Vol.14Issue(2):168-180,13.
汽车工程学报2024,Vol.14Issue(2):168-180,13.DOI:10.3969/j.issn.2095‒1469.2024.02.02

矿用无人运输车辆轨迹跟踪控制算法研究

Trajectory Tracking Control Algorithm for Unmanned Mining Transportation Vehicles

张博 1周彬 1夏启 1丁能根 1杜宇飞 2董陆军 2张伟2

作者信息

  • 1. 北京航空航天大学 交通科学与工程学院 特种车辆无人运输技术工业和信息化部重点实验室,北京 100191
  • 2. 内蒙古电投能源股份有限公司,呼和浩特 010090
  • 折叠

摘要

Abstract

The operating environment for unmanned mining transport vehicles is challenging,characterized by unstructured roads such as high-curvature bends and slopes,which demand high requirements for unmanned transportation control.To improve the adaptability of traditional control algorithms like PID and to increase the accuracy of both lateral and longitudinal control in unmanned driving trajectory tracking,this study proposes a combined approach.It involves a multi-point preview lateral control method integrating pure pursuit with PID,and a longitudinal control method considering fuzzy control table parameter fitting.This approach is developed to reduce the number of control parameters while improving the algorithm's effectiveness.Initially,a basic controller is designed using the traditional control algorithm.And then the lateral and longitudinal control algorithms are developed based on the advantages of the basic algorithm.Finally,the performance of these algorithms is verified through hardware-in-the-loop simulation and on-vehicle deployment testing.The experimental results show that compared with the Stanley method,the lateral control algorithm significantly improves vehicle path tracking accuracy.In terms of longitudinal control,the speed tracking error is less than 1 km/h,ensuring the smoothness and comfort of the vehicle's driving performance.

关键词

无人驾驶/轨迹跟踪控制/大型矿车/非结构化道路

Key words

autonomous driving/heavy mining cards/unstructured roads/trajectory tracking/control algorithms

分类

交通工程

引用本文复制引用

张博,周彬,夏启,丁能根,杜宇飞,董陆军,张伟..矿用无人运输车辆轨迹跟踪控制算法研究[J].汽车工程学报,2024,14(2):168-180,13.

基金项目

国家重点研发计划项目(2022YFB4703702) (2022YFB4703702)

汽车工程学报

OACSTPCD

2095-1469

访问量0
|
下载量0
段落导航相关论文