| 注册
首页|期刊导航|网络与信息安全学报|基于强化样本的伪孪生网络图像篡改定位模型

基于强化样本的伪孪生网络图像篡改定位模型

王金伟 张子荷 罗向阳 马宾

网络与信息安全学报2024,Vol.10Issue(1):33-47,15.
网络与信息安全学报2024,Vol.10Issue(1):33-47,15.DOI:10.11959/j.issn.2096-109x.2024010

基于强化样本的伪孪生网络图像篡改定位模型

Pseudo-siamese network image tampering localization model based on reinforced samples

王金伟 1张子荷 2罗向阳 3马宾4

作者信息

  • 1. 南京信息工程大学数字取证教育部工程研究中心,江苏南京 210044||南京信息工程大学计算机学院,江苏南京 210044||南京信息工程大学网络空间安全学院,江苏南京 210044||数字工程与先进计算国家重点实验室,河南郑州 450001
  • 2. 南京信息工程大学数字取证教育部工程研究中心,江苏南京 210044||南京信息工程大学计算机学院,江苏南京 210044||南京信息工程大学网络空间安全学院,江苏南京 210044
  • 3. 数字工程与先进计算国家重点实验室,河南郑州 450001||信息工程大学,河南郑州 450001
  • 4. 齐鲁工业大学网络空间安全学院,山东济南 250353
  • 折叠

摘要

Abstract

With the continuous development of the internet,an increasing number of images have been tampered with on the network,accompanied by a growing range of techniques to cover up tampering traces.However,most current detection models neglect the impact of image post-processing on tamper detection algorithms,limiting their real-life applications.To address these issues,a general image tampering location model based on enhanced samples and the pseudo-twin network was proposed.The pseudo-twin network enabled the model to learn tampering features in real images.On one hand,by applying convolution constraints,the image content was suppressed,allowing the model to focus more on residual trace information of tampering.The two-branch structure of the network facilitated the comprehensive utilization of image feature information.By utilizing enhanced samples,the model could dynam-ically generate the most crucial pictures for learning tamper types,enabling targeted training of the model.This ap-proach ensured that the model converged in all directions,ultimately obtaining the global optimal model.The idea of data enhancement was employed to automatically generate abundant tampered images and corresponding masks,ef-fectively resolving the limited tampering dataset issue.Extensive experiments were conducted on four datasets,demonstrating the feasibility and effectiveness of the proposed model in pixel-level tamper detection.Particularly on the Columbia dataset,the algorithm achieves a 33.5%increase in Fl score and a 23.3%increase in MCC score.These results indicate that the proposed model harnesses the advantages of deep learning models and significantly improves the effectiveness of tamper location detection.

关键词

强化样本/篡改定位/伪孪生网络/数据增强/篡改图像

Key words

enhanced sample/tampering positioning/pseudo-siamese network/data augmentation/tampering image

分类

信息技术与安全科学

引用本文复制引用

王金伟,张子荷,罗向阳,马宾..基于强化样本的伪孪生网络图像篡改定位模型[J].网络与信息安全学报,2024,10(1):33-47,15.

基金项目

国家自然科学基金(62072250,62172435,U1804263,U20B2065)The National Natural Science Foundation of China(62072250,62172435,U1804263,U20B2065) (62072250,62172435,U1804263,U20B2065)

网络与信息安全学报

OACSTPCD

2096-109X

访问量0
|
下载量0
段落导航相关论文