变权-混合决策评估的复合功能并网逆变器多目标协同优化控制方法OA北大核心CSTPCD
Multi-objective Collaborative Optimization Control Method of Composite Function Grid Connected Inverters Considering Variable Weight Hybrid Decision Evaluation
复合功能并网逆变器(multi-functional grid-connected inverter,MFGCI)在完成功率输出的同时,具备解决配电网中多种电能质量问题的能力,但该能力往往受其可用于电能质量治理的补偿容量的限制.以MFGCI的控制结构为基础,给出了无锁相环补偿指令电流及并网跟踪电流指令,提出了基于变权-混合决策评估的多目标协同优化方法,以更好适用于因新能源不确定性及非线性负荷接入导致的电能质量指标波动问题.构建了以电能质量补偿效果最佳和所需补偿容量最小的多目标函数,采用基于多目标人工蜂鸟算法(multi-objective artificial hummingbird algorithm,MOAHA)更新机制的优化算法,求解补偿各电能质量问题的最优容量分配系数,并通过多种场景下仿真,验证了所提方法的正确性和有效性.
Multi-functional grid connected inverter(MFGCI)has the ability to solve various power quality problems in the distribution network while fulfilling the power output task simultaneously,but this ability is often limited by its compensation capacity that can be used for power quality management.Based on the control structure of MFGCI,this paper provides the current compensation order and grid connection tracking current order without phase-locked loop(PLL).A multi-objective collaborative optimization method based on variable weight mixed decision evaluation is proposed to better adapt to the fluctuations in power quality indicators caused by nonlinear load integration and uncertainty of new energy.A multi-objective function is constructed to achieve the best power quality compensation effect and the minimum required compensation capacity.Based on update mechanism from the multi-objective artificial hummingbird algorithm(MOAHA),an optimization algorithm is employed to solve the optimal capacity allocation coefficient for compensating various power quality problems.The correctness and effectiveness of the proposed method are verified through simulations in various scenarios.
杨帆;卫水平;任意;陈秭龙;乐健
广州电力设计院有限公司,广东广州 510075武汉大学电气与自动化学院,湖北武汉 430072
电能质量复合功能并网逆变器协同优化变权-混合决策多目标人工蜂鸟算法
power qualitymulti-function grid connected invertercollaborative optimizationvariable weight hybrid decisionmulti-objective artificial hummingbird algorithm
《中国电力》 2024 (003)
113-125 / 13
国家重点研发计划资助项目(2022YFF0610601). This work is supported by National Key Research and Development Program of China(No.2022YFF0610601).
评论