| 注册
首页|期刊导航|智能城市|基于机器学习量化对城市热岛的形态学影响

基于机器学习量化对城市热岛的形态学影响

陈紫荆

智能城市2024,Vol.10Issue(1):53-55,3.
智能城市2024,Vol.10Issue(1):53-55,3.DOI:10.19301/j.cnki.zncs.2024.01.016

基于机器学习量化对城市热岛的形态学影响

Quantitative morphological impact of urban heat island based on machine learning

陈紫荆1

作者信息

  • 1. 广州大学,广东 广州 510000
  • 折叠

摘要

Abstract

Taking the Pearl River New Town in Guangzhou as an example,this paper uses XGBoost,Shapley Value(SHAP)and Partial Dependency Map(PDP)to evaluate the impact of urban morphology on urban heat island.The results emphasize the differential impact of urban form attributes on heat islands,and optimizing building configurations can reduce heat island risks.Urban layout factors have a threshold impact on heat islands,and it is necessary to control the surface fraction and height of buildings within a limited time to reduce negative impacts.This research model focuses on adapting to spatial planning,resisting extreme urban heat island storms,and providing recommendations for the relationship between urban form and heat island risk through interpretable machine learning.

关键词

机器学习/深度学习/城市热岛/城市建筑形态

Key words

machine learning/deep learning/urban heat island/urban architectural form

分类

资源环境

引用本文复制引用

陈紫荆..基于机器学习量化对城市热岛的形态学影响[J].智能城市,2024,10(1):53-55,3.

智能城市

2096-1936

访问量0
|
下载量0
段落导航相关论文